Signal sequences target proteins for secretion from cells or for integration into cell membranes. As nascent proteins emerge from the ribosome, signal sequences are recognized by the signal recognition particle (SRP), which subsequently associates with its receptor (SR). In this complex, the SRP and SR stimulate each other's GTPase activity, and GTP hydrolysis ensures unidirectional targeting of cargo through a translocation pore in the membrane. To define the mechanism of reciprocal activation, we determined the 1.9 A structure of the complex formed between these two GTPases. The two partners form a quasi-two-fold symmetrical heterodimer. Biochemical analysis supports the importance of the extensive interaction surface. Complex formation aligns the two GTP molecules in a symmetrical, composite active site, and the 3'OH groups are essential for association, reciprocal activation and catalysis. This unique circle of twinned interactions is severed twice on hydrolysis, leading to complex dissociation after cargo delivery.
The signal recognition particle (SRP) and its receptor comprise a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolution. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP•SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers where important questions remain to be addressed.
SUMMARY The modular SCF ubiquitin ligases feature a large family of substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCFFbxw7 is extraordinarily stable but, in the Nedd8-deconjugated state, is rapidly disassembled by the cullin-binding protein Cand1. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1–Rbx1 equilibrates with multiple F-box Protein–Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F-box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.
The bacterial homologues of the signal recognition particle (SRP) and its receptor, the Ffh•4.5S RNA ribonucleoprotein complex and the FtsY protein, respectively, form a unique complex in which both Ffh and FtsY act as GTPase activating proteins for one another, resulting in the mutual stimulation of GTP hydrolysis by both proteins. Previous work showed that 4.5S RNA enhances the GTPase activity in the presence of both Ffh and FtsY, but it was not clear how this was accomplished. In this work, kinetic and thermodynamic analyses of the GTPase reactions of Ffh and FtsY have provided insights into the role of 4.5S RNA in the GTPase cycles of Ffh and FtsY. We found that 4.5S RNA accelerates the association between Ffh and FtsY 400-fold in their GTP-bound form, analogous to its 200-fold catalytic effect on Ffh•FtsY association previously observed with the GppNHp-bound form [Peluso, P., et al. (2000) Science 288, [1640][1641][1642][1643]. Further, Ffh-FtsY association is rate-limiting for the observed GTPase reaction with subsaturating Ffh and FtsY, thereby accounting for the apparent stimulatory effect of 4.5S RNA on the GTPase activity observed previously. An additional step, GTP hydrolysis from the Ffh•FtsY complex, is also moderately facilitated by 4.5S RNA. These results suggest that 4.5S RNA modulates the conformation of the Ffh•FtsY complex and may, in turn, regulate its GTPase activity during the SRP functional cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.