Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents.
Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.
Proper control of Ca2+ signaling is mandatory for effective cell migration, which is critical for embryonic development, wound healing, and cancer metastasis. However, how Ca2+ coordinates structural components and signaling molecules for proper cell motility had remained elusive. With the advance of fluorescent live-cell Ca2+ imaging in recent years, we gradually understand how Ca2+ is regulated spatially and temporally in migrating cells, driving polarization, protrusion, retraction, and adhesion at the right place and right time. Here we give an overview about how cells create local Ca2+ pulses near the leading edge, maintain cytosolic Ca2+ gradient from back to front, and restore Ca2+ depletion for persistent cell motility. Differential roles of Ca2+ in regulating various effectors and the interaction of roles of Ca2+ signaling with other pathways during migration are also discussed. Such information might suggest a new direction to control cancer metastasis by manipulating Ca2+ and its associating signaling molecules in a judicious manner.
Low-bandgap conjugated copolymers based on a donor-acceptor structure have been synthesised via palladium-complex catalysed direct arylation polymerisation. Initially, we report the optimisation of the synthesis of poly(cyclopentadithiophene-alt-benzothiadiazole) (PCPDTBT) formed between cyclopentadithiophene and dibromobenzothiadiazole units. The polymerisation condition has been optimised, which affords high-molecular-weight polymers of up to M(n) = 70 k using N-methylpyrrolidone as a solvent. The polymers are used to fabricate organic photovoltaic devices and the best performing PCPDTBT device exhibits a moderate improvement over devices fabricated using the related polymer via Suzuki coupling. Similar polymerisation conditions have also been applied for other monomer units.
A new design concept for novel photoresponsive flash organic field-effect transistor (OFET) memory is demonstrated by employing the carbazoledioxazine polymer (Poly CD) as an electret. Photoactive electrets that can absorb the light effectively rather than photoactive semiconductors are proposed by the "photo induced recovery" mechanism in the literature; however, the correlation between the chemical structure and photoresponsive electrical performances is ambiguous. In this study, it is reported for the first time that the OFET memory with trapped charges can be optically recovered by a polymer electret and the working mechanism can be explained by the structural design. The highly planar Poly CD electret exhibits photoluminescence quenching in film states, resulting in the generation of sufficient excitons to eliminate trapped charges under light excitation. Additionally, the Poly CD electret with coplanar donor-acceptor moieties is suitable for both p-channel and n-channel semiconductors. For p-type memory devices, a large memory window (82 V) and stable nonvolatile retention performance with high ON/OFF ratio could be obtained. The memories also display good switching reliability for voltage-programming and light-erasing cycles. This study provides useful information for the development of polymer-based photoresponsive flash OFET memories and demonstrates the practical applications of photorecorder and photosensitive smart tag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.