Chronic kidney disease (CKD) is a complex disorder that affects multiple organs and increases the risk of cardiovascular complications. CKD affects approximately 12% of the population in Taiwan. Loss of kidney function leads to accumulation of potentially toxic compounds such as indoxyl sulfate (IS) and p-cresyl sulfate (pCS), two protein-bound uremic solutes that can stimulate the progression of CKD. The aim of this study was to assess whether IS and pCS levels were correlated with CKD stage. We developed and validated a method for quantitating total and free IS and pCS in serum by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Serum samples were pretreated using protein precipitation with acetonitrile containing stable isotope-labeled IS and pCS as internal standards. After centrifugation, the supernatant was diluted and injected into a UPLC-MS/MS system. Analyte concentrations were calculated from the calibration curve and ion ratios between the analyte and the internal standard. The calibration curves were linear with a correlation coefficient of >0.999; the analytical measurement range was 0.05–5 mg/L. The limit of quantitation of this assay was 0.05 mg/L for both analytes. The reference interval was ≤0.05–1.15 mg/L for total-form IS, ≤0.05 −5.33 mg/L for total-form pCS, ≤0.05 mg/L for free-form IS, and ≤0.12 mg/L for free-form pCS. A positive correlation was observed between analyte concentration and CKD stage. Our sensitive UPLC-MS/MS method for quantifying total and free-form IS and pCS in serum can be used to monitor the progression of CKD in clinical settings, identify patients at risk, and facilitate development of further therapies for this devastating disease.
BackgroundAccurate patient identification and specimen labeling at the time of collection are crucial steps in the prevention of medical errors, thereby improving patient safety.MethodsAll patient specimen identification errors that occurred in the outpatient department (OPD), emergency department (ED), and inpatient department (IPD) of a 3,800-bed academic medical center in Taiwan were documented and analyzed retrospectively from 2005 to 2014. To reduce such errors, the following series of strategies were implemented: a restrictive specimen acceptance policy for the ED and IPD in 2006; a computer-assisted barcode positive patient identification system for the ED and IPD in 2007 and 2010, and automated sample labeling combined with electronic identification systems introduced to the OPD in 2009.ResultsOf the 2000345 specimens collected in 2005, 1023 (0.0511%) were identified as having patient identification errors, compared with 58 errors (0.0015%) among 3761238 specimens collected in 2014, after serial interventions; this represents a 97% relative reduction. The total number (rate) of institutional identification errors contributed from the ED, IPD, and OPD over a 10-year period were 423 (0.1058%), 556 (0.0587%), and 44 (0.0067%) errors before the interventions, and 3 (0.0007%), 52 (0.0045%) and 3 (0.0001%) after interventions, representing relative 99%, 92% and 98% reductions, respectively.ConclusionsAccurate patient identification is a challenge of patient safety in different health settings. The data collected in our study indicate that a restrictive specimen acceptance policy, computer-generated positive identification systems, and interdisciplinary cooperation can significantly reduce patient identification errors.
This study sought to investigate the characteristic choroidal changes in patients with diabetic retinopathy and to identify factors affecting choroidal thickness (CTh), choroidal vascular index (CVI), and choriocapillaris flow in these patients. In this study, we retrospectively analyzed 79 eyes from 53 patients with diabetes from August 2021 to February 2022. We collected laboratory data, including HbA1c, serum creatinine, BUN, triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL). The measurements of the OCT images, including foveal avascular zone (FAZ), retinal vascular density, choroidal flow, retinal thickness, CTh and CVI, were analyzed. The possible determining factors affecting CTh, CVI, and choriocapillaris flow were analyzed using nonparametric multivariate analysis.We found that LDL (P<.001) was positively correlated with CTh, while CVI (P=.007) had a negative correlation with CTh in diabetic patients. Our study also identified a negative correlation between choriocapillaris flow and DVD (P=.018) in low-grade DR patients, which was not identified in patients with more advanced DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.