An adduct behaviour of ammonium molybdate tetrahydarte (AMT) with polytetrafluoroethylene (PTFE) resulted in three significant benefits: (a) a much lower degradation temperature (DT m , 82 K) of the PTFE in the adduct and a much lower final residual mass (DRM, 39%) of the adduct compared to the theoretical prediction, (b) the formation of MoO 3 and MoO 2 nanoparticles, and (c) the shuttleshaped MoO 2 nanoparticles coated with graphite exhibits superior soft magnetic property. The much earlier degradation suggested that there was a strong mutual effect between AMT and PTFE. The much lower residual mass implied that the intervention of a chemical reaction was responsible for the effect in nitrogen. Actually, Raman spectra revealed that the adducted PTFE was degraded into a graphite structure at this atmosphere, and the presence of the graphite layer led to the reduction of AMT into shuttle-shaped MoO 2 nanoparticles at 837 K to a complete extent. Controlled sintering measurements in air indicated that the AMT in the presence of PTFE produced a-MoO 3 nanoparticles, instead of MoO 2 . Further, our results indicated that the MoO 3 nanoparticles obtained had a positive response to the heterogeneous catalytic oxidation of thiophene in the presence of hydrogen peroxide. We believe that the present work is not only of relevance for applications in the degradation of polymer materials, but also will attract the attention of many groups studying the preparation and magnetic properties of transition metal oxide nanoparticles and their practical application in heterogeneous catalytic reactions.
A tricomponent aggregate PPG-Fc-beta-CD formed by polypropylene glycol (PPG), ferrocene (Fc), and beta-cyclodextrin (beta-CD) was obtained and characterized by a series of physical methods, such as (1)H nuclear magnetic resonance, flame atomic absorption spectrometry, high performance liquid chromatography, UV-vis absorption spectroscopy, thermogravimetry, and gas chromatography coupled to time-of-flight mass spectrometry. First, the tricomponent aggregate exhibited a component ratio of 1:28:32 (PPG/Fc/beta-CD) in the solid state, and showed a completely different order in thermal stability when compared with beta-CD: under a nitrogen atmosphere, beta-CD > PPG-Fc-beta-CD, and in a vacuum, PPG-Fc-beta-CD > beta-CD. Second, the appearance of two peculiar points p and q at the end of TG curve of the aggregate gave a strong impression that the degradation rate further increased after the sharp decomposition of the aggregate reached point p and the amount present in the residual fraction at point q about 780.0 K was lower than 1%, both of which were rather different from those reported previously. This finding implied that the molecular assembly resulting from the binding interaction among Fc, PPG, and beta-CD induced more efficiently the degradation of each of them. Third, an interesting phenomenon was found that the order of thermal release of the three assembled components in PPG-Fc-beta-CD was Fc > beta-CD > PPG. Results of this study provide some insight into an initial attempt to construct a supramolecule among a polymer, a coordination compound, and an organic compound.
The present work revealed the presence of the molecule-ion interaction between ethylenediaminetetraacetic acid disodium salt (Na(2)H(2)EDTA) and β-cyclodextrin (CD) on the basis of observable changes in crystal patterns and thermal behaviors before and after interaction. Results from electric conductivity measurements confirmed this presence and showed that the extent of the molecule-ion interaction was associated with the concentration of β-CD. More importantly, the molecule-ion interaction led to a decreased coordination interaction of Na(2)H(2)EDTA and copper chloride, and this decrease exhibited a concentration dependence of β-CD. Similar phenomena were also observed in the case of several analogs of Na(2)H(2)EDTA by UV-vis spectroscopy. A possible explanation was proposed on the basis of the hypothesis that there was a competitive relationship between the molecule-ion interaction and the coordination interaction. Further, nuclear magnetic resonance measurements provided important information on the difference in interaction modes of β-CD with H(2)EDTA(2-) and [Cu(EDTA)](2-). We are of the opinion that the results would provide a significant bridge between coordination chemistry and supramolecular chemistry and help us further understand factors related to different interactions in multicomponent systems.
In this study, we try to answer a fundamental question: what is the consequence of the noncovalent interaction between a polymer and a coordination compound? Here, polyethylene glycol (PEG-4000, PEG-b) and copper complex of ethylenediaminetetraacetic acid (H(2)CuY) were employed to solve this problem. A novel adduct (CEP) between H(2)CuY and PEG-b was prepared. Our results indicated several interesting findings. First, the introduction of H(2)CuY had no effect on the stacking structure of PEG-b but led to a large change in surface structure of the polymer. Second, there was a significant difference (117 K) in the maximum degradation temperature between the PEG and the CEP, suggesting that the noncovalent interaction can drastically improve the thermal stability of the PEG. Third, sintering experiments showed that H(2)CuY and CEP produced completely different decomposition products. The former formed Cu crystals in nitrogen and CuO in air, but the latter generated Cu and CuCl crystals with good crystallinity, respectively. Finally, three independent measurements: viscosity, conductivity and nuclear magnetic resonance in solution, provided useful information and insights from both sides of the noncovalent interaction. Probable interaction mechanisms and interaction sites were proposed. We consider that the current research could create the foundation for a new understanding of how the noncovalent adduct interaction between a metallic complex and a polymer relates to the change in physical and chemical properties of the adducted components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.