ABSTRACT. , a member of the microRNA-200 family, has been identified to be capable of suppressing glioma cell growth through targeting CREB1 or CD133. However, whether miR-200b affects the biological behavior (proliferation, invasion, and migration) of glioma cells is poorly understood. The aim of this study was to evaluate the effect of miR-200b on the biological behavior of glioma cells in vitro. inhibitor, and mimic control were transfected into conventionally cultured glioma U251 cells, followed by measuring the expression of miR-200b and CD133 in transfected cells by RT-PCR; effect of miR-200b on CD133 mRNA 3'-UTR luciferase activity by luciferase reporter assay; proliferation activity of transfected U251 cells by MTT method; and changes in U251 cell invasion and migration by Transwell method after transfection. Compared to that in the miRNA-200b inhibitor, mimic control, and blank control groups, miRNA-200b expression was significantly increased and CD133 mRNA expression was significantly decreased in the mimic miRNA200b group in a time-dependent manner (P < 0.05). Meanwhile, dual luciferase reporter assay showed that miR-200b could inhibit CD133 activity through binding to the 3'-UTR of CD133 mRNA (P < 0.05). Furthermore, the proliferation activity and invasion and migration abilities of U251 cells transfected with miRNA-200b mimic were significantly decreased (P < 0.05). In conclusion, overexpression of miR-200b inhibited the proliferation, invasion, and migration of glioma cells possibly through targeting CD133.
The provirus integrating site Moloney murine leukemia virus (PIM) family of serine/threonine protein kinases is composed of three members, PIM1, PIM2 and PIM3, which have been identified as oncoproteins in various malignancies. However, their role in osteosarcoma (OS) remains largely unknown. This study aimed to examine the expression patterns and the clinical significance of PIM kinases in human OS and their biological effects in human OS cell lines. Immunohistochemical staining was used to detect PIM kinases in archived pathologic material from 43 patients with primary OS; in addition, the effects of PIM knockdown and overexpression on the proliferation, migration and invasion of OS cell lines were determined. We observed that all three PIM kinases were frequently expressed in OS, but only PIM1 positive expression was associated with poorer prognosis regarding overall survival of OS patients. In addition, knockdown of PIM kinases notably inhibited OS cell proliferation, migration and invasiveness, whereas overexpression of PIM kinases resulted in increased OS cell growth and motility. This study suggests that PIM1 could be a valuable prognostic marker in patients with OS, and the biological functions of PIM kinase family in the osteosarcoma cell lines indicate that they could serve as potential therapeutic targets for OS.
African swine fever virus (ASFV) infection is a major public and socioeconomic concern that has a serious impact on the global swine industry. Unfortunately, there are currently no commercially available vaccines or antiviral agents that are both safe and effective against ASFV. In the study, we use primary porcine alveolar macrophages to screen a kinase inhibitor library for anti-ASFV compounds. Six candidate compounds that inhibited ASFV infection with inhibition of > 90% were identified, among which brincidofovir exhibited optimal inhibitory effects on ASFV. Brincidofovir reduces ASFV replication in a dose-dependent manner (IC 50 = 2.76 nM) without cytotoxicity (CC 50 = 58 μM). It possesses the ability to reduce viral titres and inhibit viral structural protein expression. Time-of-addition assays suggest that the compound interferes with the post-invasion stage of the viral infection cycle. In pig challenge experiments, brincidofovir was indicated to protect pigs against ASFV-induced lethality by decreasing the viral load in organs and peripheral blood, while it alleviated the histopathological changes associated with ASFV infection. Furthermore, brincidofovir also decreased viral shedding in pigs with ASFV infection. Our data together demonstrate that brincidofovir may serve as a potentially effective agent for the prevention and control of ASFV infection, whereas further investigations are still required.
Atherosclerosis (AS) is a common underlying pathology of coronary artery disease, peripheral artery disease, and stroke. The characteristics of immune cells within plaques and their functional relationships with blood are crucial in AS. In this study, Mass cytometry (CyTOF), RNA-sequencing and immunofluorescence were combined to comprehensively analyze plaque tissues and peripheral blood from 25 AS patients (22 for Mass cytometry and 3 for RNA-sequencing), as well as blood from 20 healthy individuals. The study identified a complexity of leukocytes in the plaque, including both defined anti-inflammatory and pro-inflammatory subsets such as M2-like CD163+ macrophages, Natural killer T cells (NKT), CD11b+ CD4+ T effector memory cells (Tem), and CD8+ terminally differentiated effector memory cells (TEMRA). Functionally activated cell subsets were also found in peripheral blood in AS patients, highlighting the vivid interactions between leukocytes in plaque and blood. The study provides an atlas of the immune landscape in atherosclerotic patients, where pro-inflammatory activation was found to be a major feature of peripheral blood. The study identified NKT, CD11b+ CD4+ Tem, CD8+ TEMRA and CD163+ macrophages as key players in the local immune environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.