A fundamental question regarding autophagosome formation is how the shape of the double-membrane autophagosomal vesicle is generated. Here we show that in mammalian cells assembly of an actin scaffold inside the isolation membrane (the autophagosomal precursor) is essential for autophagosomal membrane shaping. Actin filaments are depolymerized shortly after starvation and actin is assembled into a network within the isolation membrane. When formation of actin puncta is disrupted by an actin polymerization inhibitor or by knocking down the actin-capping protein CapZβ, isolation membranes and omegasomes collapse into mixed-membrane bundles. Formation of actin puncta is PtdIns(3)P dependent, and inhibition of PtdIns(3)P formation by treating cells with the PI(3)K inhibitor 3-MA, or by knocking down Beclin-1, abolishes the formation of actin puncta. Binding of CapZ to PtdIns(3)P, which is enriched in omegasomes, stimulates actin polymerization. Our findings illuminate the mechanism underlying autophagosomal membrane shaping and provide key insights into how autophagosomes are formed.
A temperate haloarchaeal virus, SNJ1, was induced from the lysogenic host, Natrinema sp. J7-1, with mitomycin C, and the virus produced plaques on lawns of Natrinema sp. J7-2. Optimization of the induction conditions allowed us to increase the titer from ~10(4) PFU/ml to ~10(11) PFU/ml. Single-step growth curves exhibited a burst size of ~100 PFU/cell. The genome of SNJ1 was observed to be a circular, double-stranded DNA (dsDNA) molecule (16,341 bp). Surprisingly, the sequence of SNJ1 was identical to that of a previously described plasmid, pHH205, indicating that this plasmid is the provirus of SNJ1. Several structural protein-encoding genes were identified in the viral genome. In addition, the comparison of putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses, as well as the presence of lipid constituents from the host phospholipid pool, strongly suggest that SNJ1 belongs to the PRD1-type lineage of dsDNA viruses, which have an internal membrane.
Proteins are thought to be delivered to the bacterial plasma membrane cotranslationally by signal recognition particle or posttranslationally by SecA. Wang et al. identify a new membrane protein–targeting pathway in bacteria in which SecA cotranslationally recognizes and targets the inner membrane protein RodZ, which harbors an internal transmembrane domain.
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the N-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membraneembedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
The ribosome exit site is a crowded environment where numerous factors contact nascent polypeptides to influence their folding, localization, and quality control. Timely and accurate selection of nascent polypeptides into the correct pathway is essential for proper protein biogenesis. To understand how this is accomplished, we probe the mechanism by which nascent polypeptides are accurately sorted between the major cotranslational chaperone trigger factor (TF) and the essential cotranslational targeting machinery, signal recognition particle (SRP). We show that TF regulates SRP function at three distinct stages, including binding of the translating ribosome, membrane targeting via recruitment of the SRP receptor, and rejection of ribosome-bound nascent polypeptides beyond a critical length. Together, these mechanisms enhance the specificity of substrate selection into both pathways. Our results reveal a multilayered mechanism of molecular interplay at the ribosome exit site, and provide a conceptual framework to understand how proteins are selected among distinct biogenesis machineries in this crowded environment.signal recognition particle | trigger factor | ribosome | protein biogenesis | GTPases P roper protein biogenesis is a prerequisite for the maintenance of a functional proteome. Accumulating data indicate that this process begins at the ribosome exit site, where many protein biogenesis machineries can interact and gain access to the nascent polypeptide. This includes chaperones (1-5) such as trigger factor (TF) (1, 4, 6, 7), Hsp70, and the nascent polypeptide-associated complex (8-13); modification enzymes (10, 14-16) such as N-acetyl transferase, methionine aminopeptidase, and arginyl transferase; protein-targeting and translocation machineries such as signal recognition particle (SRP) (17-20), SecA (21), the SecYEG (or Sec61p) (22, 23) and YidC translocases (24,25), and the ribosome-bound quality control complex (26)(27)(28)(29)(30). Engagement of these factors with nascent polypeptides influences their folding, assembly, localization, processing, and quality control. Within seconds after the nascent polypeptide emerges from the ribosomal exit tunnel, it must engage the correct set of factors and thus commit to the proper biogenesis pathway. How this is accomplished in the crowded environment at the ribosome exit site is an emerging question. In this work, we address this question by deciphering how nascent proteins are selected between two major protein biogenesis machineries in bacteria, SRP and TF.SRP is a universally conserved ribonucleoprotein complex responsible for the cotranslational targeting of proteins to the eukaryotic endoplasmic reticulum (ER), or the bacterial plasma membrane (31). SRP recognizes ribosome-nascent chain complexes (termed RNC or cargo) carrying strong signal sequences and delivers them to the SecYEG or YidC translocation machinery on the target membrane. SRP binds RNC via two interactions: a helical N domain in the SRP54 protein (called Ffh in bacteria) binds the ribosoma...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.