Rose (Rosa hybrida) plants are major ornamental species worldwide, and their commercial value greatly depends on their open flowers, as both the quality of fully open petals and long vase life are important. Petal senescence can be started and accelerated by various hormone signals, and ethylene is considered an accelerator of petal senescence in rose. To date, however, the underlying mechanism of signaling crosstalk between ethylene and other hormones such as JA in petal senescence remains largely unknown. Here, we isolated RhMYB108, an R2R3-MYB transcription factor, which is highly expressed in senescing petals as well as in petals treated with exogenous ethylene and JA. Applications of exogenous ethylene and JA markedly accelerated petal senescence, while the process was delayed in response to applications of 1-MCP, an ethylene action inhibitor. In addition, silencing of RhMYB108 alter the expression of SAGs such as RhNAC029, RhNAC053, RhNAC092, RhSAG12, and RhSAG113, and finally block ethylene-and JA-induced petal senescence. Furthermore, RhMYB108 was identified to target the promoters of RhNAC053, RhNAC092, and RhSAG113. Our results reveal a model in which RhMYB108 functions as a receptor of ethylene and JA signals to modulate the onset of petal senescence by targeting and enhancing senescence-associated gene expression.
Soybean is an important crop that is grown worldwide. Flowering time is a critical agricultural trait determining successful reproduction and yields. For plants, light and temperature are important environmental factors that regulate flowering time. Soybean is a typical short-day (SD) plant, and many studies have elucidated the fine-scale mechanisms of how soybean responds to photoperiod. Low temperature can delay the flowering time of soybean, but little is known about the detailed mechanism of how temperature affects soybean flowering. In this study, we isolated GmFLC-like from soybean, which belongs to the FLOWERING LOCUS C clade of the MADS-box family and is intensely expressed in soybean leaves. Heterologous expression of GmFLC-like results in a delayed-flowering phenotype in Arabidopsis. Additional experiments revealed that GmFLC-like is involved in long-term low temperature-triggered late flowering by inhibiting FT gene expression. In addition, yeast one-hybrid, dual-luciferase reporter assay, and electrophoretic mobility shift assay revealed that the GmFLC-like protein could directly repress the expression of FT2a by physically interacting with its promoter region. Taken together, our results revealed that GmFLC-like functions as a floral repressor involved in flowering time during treatments with various low temperature durations. As the only the FLC gene in soybean, GmFLC-like was meaningfully retained in the soybean genome over the course of evolution, and this gene may play an important role in delaying flowering time and providing protective mechanisms against sporadic and extremely low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.