We developed an easily accessible boron-dipyrromethene (BODIPY)-based fluorogenic probe, which we named LD-TB. This probe emits bright fluorescence in oil; when compared with aqueous solution, a significant enhancement of fluorescence brightness is observed. Cellular experiments confirmed that the probe stains the lipid droplets (LDs) specifically in both live and fixed cells, providing background-free images. Compared with Nile Red dye, a commonly used LD marker, LD-TB showed superior photostability. The sharp absorption and emission bands enable its multicolor imaging with blue and green probes. Importantly, the probe has proved to have low toxicity and is compatible with cell fixation. Our research provides a promising new fluorogenic probe for specific imaging of LDs.
Lipophilic fluorescent dyes can be employed as sensors for surfactants present in concentrations above the critical micellar concentration (CMC) where the dyes are monodispersed in micelles. However, the surfactant concentration range over which these dyes are effective is narrowed because by the sigmoidal nature of their responses. To overcome this limitation, we developed a novel sensor material comprised of a labeled fluorescent solvatochromic dye covalently bonded to alginate gel, which is known to strongly adsorb cationic surfactants. We hypothesized that the dye-alginate conjugate would undergo fluorescent color changes in response to binding of surfactants which alter the polarity of the surrounding environment. Indeed, addition of the representative cationic surfactant, cetylpyridinium chloride (CPC), to an aqueous solution of the alginate conjugated fluorescent solvatochromic dye leads to a visible fluorescent color change when the concentration of CPC is below the CMC. The average values of the color appearance parameter, referred to as a hue, of light emitted from gels, calculated by analysis of fluorescence microscopy images using ImageJ software, were found to be approximately linearly dependent on the concentration of CPC encapsulated in the alginate-fluorescent dye complex. This finding shows that absorbed CPC can be quantitatively determined over a wide concentration range in the form of simple fluorescence wavelength or visible responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.