Here we report the growth of phase-pure InAs nanowires on Si (111) substrates by molecular-beam epitaxy using Ag catalysts. A conventional one-step catalyst annealing process is found to give rise to InAs nanowires with diameters ranging from 4.5 to 81 nm due to the varying sizes of the Ag droplets, which reveal strong diameter dependence of the crystal structure. In contrast, a novel two-step catalyst annealing procedure yields vertical growth of highly uniform InAs nanowires ∼10 nm in diameter. Significantly, these ultrathin nanowires exhibit a perfect wurtzite crystal structure, free of stacking faults and twin defects. Using these high-quality ultrathin InAs nanowires as the channel material of metal-oxide-semiconductor field-effect transistor, we have obtained a high ION/IOFF ratio of ∼10(6), which shows great potential for application in future nanodevices with low power dissipation.
We report wide-range composition and annealing effects on magnetic properties of Mn x Ga films grown on GaAs (001) by molecular-beam epitaxy. We obtained single-crystalline Mn x Ga films in a surprisingly wide composition range from x=0.76 to 2.6. We show that the magnetism could be effectively tailored by adjusting composition and annealing. Especially, when 0.76≤x≤1.75, Mn x Ga films simultaneously show magnetization from 130 to 450 emu/cc, perpendicular anisotropy among 8.6 to 21 Merg/cc, intrinsic coercivity from 4.38 to 20.1 kOe, normal coercivity up to 3.6 kOe, energy product up to 3.4 MGOe and thermal-stability up to at least 350 o C in contact with GaAs.
A new kind of multifunctional L1(0) -Mn(1.5)Ga film is demonstrated for the first time. These MBE-grown epitaxial films exhibit pronounced magnetic properties at room temperature, including ultrahigh perpendicular coercivity up to 42.8 kOe, giant perpendicular magnetic anisotropy with a maximum of 21.7 Merg/cm(3) and large magnetic energy products up to 2.60 MGOe, which allow various applications in ultrahigh density recording, spintronics, and permanent magnets.
The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic- to square-root temperature dependence and deviation from it in three distinct temperature regimes. Our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.