Here we report the growth of phase-pure InAs nanowires on Si (111) substrates by molecular-beam epitaxy using Ag catalysts. A conventional one-step catalyst annealing process is found to give rise to InAs nanowires with diameters ranging from 4.5 to 81 nm due to the varying sizes of the Ag droplets, which reveal strong diameter dependence of the crystal structure. In contrast, a novel two-step catalyst annealing procedure yields vertical growth of highly uniform InAs nanowires ∼10 nm in diameter. Significantly, these ultrathin nanowires exhibit a perfect wurtzite crystal structure, free of stacking faults and twin defects. Using these high-quality ultrathin InAs nanowires as the channel material of metal-oxide-semiconductor field-effect transistor, we have obtained a high ION/IOFF ratio of ∼10(6), which shows great potential for application in future nanodevices with low power dissipation.
Negative photoconductivity (NPC) and positive photoconductivity (PPC) are observed in the same individual InAs nanowires grown by metal-organic chemical vapor deposition. NPC displays under weak light illumination due to photoexcitation scattering centers charged with hot carrier in the native oxide layer. PPC is observed under high light intensity. Through removing the native oxide layer and passivating the nanowire with HfO, we eliminate the NPC effect and realize intrinsic photoelectric response in InAs nanowire.
Negative photoconductivity is observed in InAs nanowires (NWs) without a surface defective layer. The negative photoconductivity is strongly dependent on the wavelength and intensity of the light, and is also sensitive to the environmental atmosphere. Two kinds of mechanisms are discerned to work together. One is related to gas adsorption, which is photodesorption of water molecules and photo-assisted chemisorption of O2 molecules. The other one can be attributed to the photogating effect introduced by the native oxide layer outside the NWs.
We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.
We report a new design of carbon nanotube (CNT) resonator, whose resonance frequency can be tuned not only transversally by a gate voltage, but also by the axial strain applied through directly pulling the CNT. The resonators are fabricated from individual suspended single-walled CNT (SWCNT) in situ inside a scanning electron microscope. The resonance frequency of a SWCNT resonator can be tuned by more than 20 times with an increase of quality factor when the axial strain of the SWCNT is only increased from nearly zero to 2% at room temperature. The transversal gate-tuning ability is found to be weaker than the axial-tuning ability and decrease with increasing the axial strain. The gate voltage can hardly tune the resonance frequency when the initial axial strain is larger than 0.35% and the CNT acts like a tied string. The relationship among resonance frequency, gate voltage, and initial axial strain of the CNT obtained presently will allow for the designs of CNT resonators with high frequency and large tuning range. The present resonator also shows ultrahigh sensitivity in displacement and force detection, with a resolution being better than 2.4 pm and 0.55 pN, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.