We report a new design of carbon nanotube (CNT) resonator, whose resonance frequency can be tuned not only transversally by a gate voltage, but also by the axial strain applied through directly pulling the CNT. The resonators are fabricated from individual suspended single-walled CNT (SWCNT) in situ inside a scanning electron microscope. The resonance frequency of a SWCNT resonator can be tuned by more than 20 times with an increase of quality factor when the axial strain of the SWCNT is only increased from nearly zero to 2% at room temperature. The transversal gate-tuning ability is found to be weaker than the axial-tuning ability and decrease with increasing the axial strain. The gate voltage can hardly tune the resonance frequency when the initial axial strain is larger than 0.35% and the CNT acts like a tied string. The relationship among resonance frequency, gate voltage, and initial axial strain of the CNT obtained presently will allow for the designs of CNT resonators with high frequency and large tuning range. The present resonator also shows ultrahigh sensitivity in displacement and force detection, with a resolution being better than 2.4 pm and 0.55 pN, respectively.
To suppress short channel effects, lower off-state leakage current and enhance gate coupling efficiency, InAs nanowires (NWs) with diameter smaller than 10 nm could be needed in field-effect transistors (FETs) as the channel length scales down to tens of nanometers to improve the performance and increase the integration. Here, we fabricate and study FETs based on ultrathin wurtzite-structured InAs NWs, with the smallest NW diameter being 7.2 nm. The FETs based on ultrathin NWs exhibit high Ion/Ioff ratios of up to 2 × 108, small subthreshold swings of down to 120 mV/decade, and operate in enhancement-mode. The performance of the devices changes as a function of the diameter of the InAs NWs. The advantages and challenges of the FETs based on ultrathin NWs are discussed.
With the scaling down of field effect transistors (FETs) to improve performance, the contact between the electrodes and the channel becomes more and more important. Contact properties of FETs based on ultrathin InAs NWs (with the diameter ranging from sub-7 nm to 16 nm) are investigated here. Chromium (Cr) and nickel (Ni) are proven to form ohmic contact with the ultrathin InAs NWs, in contrast to a recent report (Razavieh A et al ACS Nano 8 6281). Furthermore, the contact resistance is found to depend on the NW diameter and the contact metals, which between Cr and InAs NWs increases more rapidly than that between Ni and InAs NWs when the NW diameter decreases. The origins of the contact resistance difference for the two kinds of metals are studied and NixInAs is believed to play an important role. Based on our results, it is advantageous to use Ni as contact metal for ultrathin NWs. We also observe that the FETs are still working in the diffusive regime even when the channel length is scaled down to 50 nm.
The relationship between property and structure is one of the most important fundamental questions in the field of nanomaterials and nanodevices. Understanding the multiproperties of a given nano-object also aids in the development of novel nanomaterials and nanodevices. In this paper, we develop for the first time a comprehensive platform for in situ multiproperty measurements of individual nanomaterials using a scanning electron microscope (SEM). Mechanical, electrical, electromechanical, optical, and photoelectronic properties of individual nanomaterials, with lengths that range from less than 200 nm to 20 μm, can be measured in situ with an SEM on the platform under precisely controlled single-axial strain and environment. An individual single-walled carbon nanotube (SWCNT) was measured on the platform. Three-terminal electronic measurements in a field effect transistor structure showed that the SWCNT was semiconducting and agreed with the structure characterization by transmission electron microscopy after the in situ measurements. Importantly, we observed a bandgap increase of this SWCNT with increasing axial strain, and for the first time, the experimental results quantitatively agree with theoretical predictions calculated using the chirality of the SWCNT. The vibration performance of the SWCNT, a double-walled CNT, and a triple-walled CNT were also studied as a function of axial strain, and were proved to be in good agreement with classical beam theory, although the CNTs only have one, two, or three atomic layers, respectively. Our platform has wide applications in correlating multiproperties of the same individual nanostructures with their atomic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.