In view of the existing problems of complexity of process parameters and the difficulty in determining the optimal process in the field of 3D printing, polylactic acid (PLA) samples were prepared by fused deposition modeling (FDM). Orthogonal experiments were designed with 3D printing parameters (layer height, filling density and printing speed) as factors. The effects of layer height, filling density and printing speed on the tensile and compressive properties of PLA were studied. When layer height is 0.15 mm, the filling density is 100%, and the printing speed is 30 mm/s, the sample has the best comprehensive mechanical properties.
The variation of substrate concentration in anode chamber directly affects the power generation efficiency and decontamination performance of microbial fuel cell (MFC). In this study, three concentrations of swine wastewater with 800 mg/L, 1600 mg/L and 2500 mg/L were selected as substrates, and the performance of MFC and response characteristics of anode microbial community were investigated. The results show that the concentration of a selected substrate is positively correlated with the output voltage of MFC and chemical oxygen demand (COD) removal rate. The microbial community diversity in the anode chamber and the performance of battery can be significantly affected when concentration changes in different ways, which helps to selectively cultivate the adaptable dominant bacteria to enhance the stability and decontamination performance of MFC. The community structure of anodic biofilm is mainly composed of Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Spirochaetae. These findings are meaningful to improve the treatment effects of swine wastewater and can help to find out the mechanism of varying concentration that influences the production of microorganisms in MFC.
Underwater vision-based detection plays an increasingly important role in underwater security, ocean exploration and other fields. Due to the absorption and scattering effects of water on light, as well as the movement of the carrier, underwater images generally have problems such as noise pollution, color cast and motion blur, which seriously affect the performance of underwater vision-based detection. To address these problems, this study proposes an end-to-end marine organism detection framework that can jointly optimize the image enhancement and object detection. The framework uses a two-stage detection network with dynamic intersection over union (IoU) threshold as the backbone and adds an underwater image enhancement module (UIEM) composed of denoising, color correction and deblurring sub-modules to greatly improve the framework’s ability to deal with severely degraded underwater images. Meanwhile, a self-built dataset is introduced to pre-train the UIEM, so that the training of the entire framework can be performed end-to-end. The experimental results show that compared with the existing end-to-end models applied to marine organism detection, the detection precision of the proposed framework can improve by at least 6%, and the detection speed has not been significantly reduced, so that it can complete the high-precision real-time detection of marine organisms.
Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Glial fibrillary acidic protein (GFAP) is regarded as a hallmark of mature astrocytes, though some GFPA-positive cells may act as neural stem cells. Missense heterozygous mutations in GFAP cause Alexander disease that manifests leukodystrophy and intellectual disability. Here, we show that CUL4B, a scaffold protein that assembles E3 ubiquitin ligase, represses the expression of GFAP in neural progenitor cells (NPCs) during brain development. Lack of Cul4b in NPCs in cultures led to increased generation of astrocytes, marked by GFAP and S100β. The GFAP+ cells were also found to be more abundant in the brains of nervous system-specific Cul4b knockout mice in vivo. Moreover, we demonstrated that the increased generation of GFAP+ cells from Cul4b-null NPCs was mediated by an upregulation of prostaglandin D2 synthase PTGDS. We showed that the increased GFAP expression can be attenuated by pharmacological inhibition of the PTGDS enzymatic activity or by shRNA-mediated knockdown of Ptgds. Importantly, exogenously added PTGDS could promote the generation of GFAP+ cells from wild-type NPCs. We further observed that Ptgds is targeted and repressed by the CUL4B/PRC2 complex. Together, our results demonstrate CUL4B as a negative regulator of GFAP expression during neural development.
As an industrial solid waste, the original aluminum ash (OAA) will cause serious pollution to the air and soil. How to reuse the OAA has been a research difficulty. Thus, a method of preparing a plasma spray powder using OAA is proposed. The OAA was hydrolyzed and ball milled, and the flowability of original aluminum ash spray powder (OAASP) was evaluated by the angle of repose. The coating properties were determined via analyzing the microstructure and the phase of the coating, and the effects of plasma spray parameters on the coating properties were investigated by the orthogonal experiment to optimize spray parameters. The results show that the angle of repose of OAASP after granulation was less than 40°, which met the requirements of plasma spraying. When the spraying current was 600 A, the spraying voltage was 60 V, the main gas flow was 33 slpm, and the powder flow rate was 22 g/min, and the prepared original aluminum ash coating (OAAC) had excellent comprehensive performance. After the spraying process parameters were optimized, the microhardness of the coating was 606.54 HV, which is about twice the hardness of the substrate; the abrasion rate was 12.86 × 10−3 g/min; the porosity was 0.16%; and the adhesive strength was 16 MPa. When the amount of Al2O3 added was 50%, the hardness of the coating was increased by 17.61%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.