Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors can achieve higher and more consistent micropollutant removal. However, regardless of what technology is employed, the removal of micropollutants depends on physico-chemical properties of micropollutants and treatment conditions. The evaluation of micropollutant removal from municipal wastewater should cover a series of aspects from sources to end uses. After the release of micropollutants, a better understanding and modeling of their fate in surface water is essential for effectively predicting their impacts on the receiving environment.
SUMMARY Porphyromonas gingivalis is a low-abundance oral anaerobic bacterium implicated in periodontitis, a polymicrobial inflammatory disease, and the associated systemic conditions. However, the mechanism by which P. gingivalis contributes to inflammation and disease has remained elusive. Here we show that P. gingivalis, at very low colonization levels, triggers changes to the amount and composition of the oral commensal microbiota leading to inflammatory periodontal bone loss. The commensal microbiota and the complement pathway were both required for P. gingivalis-induced bone loss as germ-free mice or conventionally raised C3a and C5a receptor deficient mice did not develop bone loss after inoculation with P. gingivalis. These findings demonstrate that a single, low-abundance species can disrupt host-microbial homeostasis to cause inflammatory disease. The identification and targeting of similar low-abundance pathogens with community-wide impact may be important for treating inflammatory diseases of polymicrobial etiology.
Summary NF-κB, a key activator of inflammation primes the NLRP3-inflammasome for activation by inducing pro-IL-1β and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy receptor p62/SQSTM1. External NLRP3-activating stimuli trigger a form of mitochondrial (mt) damage that is caspase-1- and NLRP3-independent and causes release of direct NLRP3-inflammasome activators, including mtDNA and mtROS. Damaged mitochondria undergo Parkin-dependent ubiquitin conjugation and are specifically recognized by p62, which induces their mitophagic clearance. Macrophage-specific p62 ablation causes pronounced accumulation of damaged mitochondria and excessive IL-1β-dependent inflammation, enhancing macrophage death. Therefore, the “NF-κB-p62-mitophagy” pathway is a macrophage-intrinsic regulatory loop through which NF-κB restrains its own inflammation-promoting activity and orchestrates a self-limiting host response that maintains homeostasis and favors tissue repair.
Dysregulated NLRP3 inflammasome activity results in uncontrolled inflammation, which underlies many chronic diseases. Although mitochondrial damage is needed for the assembly and activation of the NLRP3 inflammasome, it is unclear how macrophages are able to respond to structurally diverse inflammasome-activating stimuli. Here we show that the synthesis of mitochondrial DNA (mtDNA), induced after the engagement of Toll-like receptors, is crucial for NLRP3 signalling. Toll-like receptors signal via the MyD88 and TRIF adaptors to trigger IRF1-dependent transcription of CMPK2, a rate-limiting enzyme that supplies deoxyribonucleotides for mtDNA synthesis. CMPK2-dependent mtDNA synthesis is necessary for the production of oxidized mtDNA fragments after exposure to NLRP3 activators. Cytosolic oxidized mtDNA associates with the NLRP3 inflammasome complex and is required for its activation. The dependence on CMPK2 catalytic activity provides opportunities for more effective control of NLRP3 inflammasome-associated diseases.
Aging is linked to increased susceptibility to chronic inflammatory diseases several of which, including periodontitis, involve neutrophil-mediated tissue injury. Here, we found that aging-associated periodontitis was accompanied by diminished expression of Del-1 (EDIL3), an endogenous inhibitor of LFA-1 integrin-dependent neutrophil adhesion, and by a reciprocal increase in IL-17 expression. Consistently, IL-17 inhibited gingival endothelial cell expression of Del-1, thereby promoting LFA-1-dependent neutrophil recruitment. Young Del-1-deficient mice developed spontaneous periodontitis featuring excessive neutrophil infiltration and IL-17 expression; disease was prevented in Del-1–LFA-1 and Del-1–IL-17 receptor double-deficient mice. Locally administered Del-1 inhibited IL-17 production, neutrophil accumulation, and bone loss. Therefore, Del-1 suppresses LFA-1-dependent neutrophil recruitment and IL-17-triggered inflammatory pathology and may thus be a promising therapeutic for inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.