Polymeric carbon nitride (CN) has recently emerged as a novel metal-free semiconductor due to its unique electronic structure, wide availability, and promising applications in photoelectrochemical solar energy conversion. However, few works regarding CN photoelectrode optimization such as by minimization of unwanted grain boundary effects have been reported, which would greatly influence the photoelectrochemcial conversion efficiency. Herein, three general ways of preparing CN photoelectrode are presented and compared, including drop-casting of CN particles, or further blendeding with Nafion or PEDOT-PSS as the binder. In addition, the influences of CN particle sizes (0.5, 1.1, and 3.2 μm) and the film thickness (i.e., the loading amount) to the overall photoelectrochemcial activity were also evaluated in detail. As a result, when PEDOT-PSS acted as binder, CN particles with size of 0.5 μm and an optimal loading amount (2.4 mg/cm(2)) were adopted; the as-prepared CN photoelectrode had much superior photoelectrochemical activity than all other counterparts. Therefore, this study would pave the way for preparing CN photoelectrode of superior quality so as to promote CN materials to be better applied in solar fuel and sensing applications.
Non-obstructive azoospermia (NOA) is one of the most important causes of male infertility. It is mainly characterized by the absence of sperm in semen repeatedly or the number of sperm is small and not fully developed. At present, its pathogenesis remains largely unknown. The goal of this study is to identify hub genes that might affect biomarkers related to spermatogenesis. Using the clinically significant transcriptome and single-cell sequencing data sets on the Gene Expression Omnibus (GEO) database, we identified candidate hub genes related to spermatogenesis. Based on them, we performed Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, protein-protein interaction (PPI) network analysis, principal component analysis (PCA), cell cluster analysis, and pseudo-chronological analysis. We identified a total of 430 differentially expressed genes, of which three have not been reported related to spermatogenesis (C22orf23, TSACC, and TTC25), and the expression of these three hub genes was different in each type of sperm cells. The results of the pseudo-chronological analysis of the three hub genes indicated that TTC25 was in a low expression state during the whole process of sperm development, while the expression of C22orf23 had two fluctuations in the differentiating spermatogonia and late primary spermatocyte stages, and TSACC showed an upward trend from the spermatogonial stem cell stage to the spermatogenesis stage. Our research found that the three hub genes were different in the trajectory of sperm development, indicating that they might play important roles in different sperm cells. This result is of great significance for revealing the pathogenic mechanism of NOA and further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.