The development of low-cost, high-efficiency, and robust electrocatalysts for the oxygen evolution reaction (OER) is urgently needed to address the energy crisis. In recent years, non-noble-metal-based OER electrocatalysts have attracted tremendous research attention. Beginning with the introduction of some evaluation criteria for the OER, the current OER electrocatalysts are reviewed, with the classification of metals/alloys, oxides, hydroxides, chalcogenides, phosphides, phosphates/borates, and other compounds, along with their advantages and shortcomings. The current knowledge of the reaction mechanisms and practical applications of the OER is also summarized for developing more efficient OER electrocatalysts. Finally, the current states, challenges, and some perspectives for non-noble-metal-based OER electrocatalysts are discussed.
Silver(i) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.
Rational design and construction of Z-scheme photocatalysts has received much attention in the field of CO2 reduction because of its great potential to solve the current energy and environmental crises. In this study, a series of Z-scheme BiOI/g-C3N4 photocatalysts are synthesized and their photocatalytic performance for CO2 reduction to produce CO, H2 and/or CH4 is evaluated under visible light irradiation (λ > 400 nm). The results show that the as-synthesized composites exhibit more highly efficient photocatalytic activity than pure g-C3N4 and BiOI and that the product yields change remarkably depending on the reaction conditions such as irradiation light wavelength. Emphasis is placed on identifying how the charge transfers across the heterojunctions and an indirect Z-scheme charge transfer mechanism is verified by detecting the intermediate I3(-) ions. The reaction mechanism is further proposed based on the detection of the intermediate (•)OH and H2O2. This work may be useful for rationally designing of new types of Z-scheme photocatalyst and provide some illuminating insights into the Z-scheme transfer mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.