Dongying’s Paleogene geothermal resources are an important part of the geothermal resources of the Tianjin coastal region. The extent of the geothermal fluid resources and the supply relationship have become increasingly important, and will determine whether demand targets can be met. Dongying’s Paleogene formation in the Tianjin coastal regions is widely distributed to the east of the Cangdong fracture, but it is absent west of the Cangdong fracture. On the basis of introducing the geological characteristics and depositional characteristics of the Dongying formation, we analyzed the hydraulic conductivity of the Cangdong fracture to the Dongying formation geothermal reservoir from the aspects of geological condition, dynamic of groundwater level and hydrologic geochemistry. Based on the hydrochemical information and the isotope data gained during the water quality evaluation and isotope data analysis process, we discovered the main chemical composition, hydrogen and oxygen isotope data and geothermal fluid age are significantly different between the Dongying formation geothermal reservoir and the overlying and underlying geothermal reservoirs. It is inferred that the hydraulic conductivity of the Cangdong fracture to the Dongying formation geothermal reservoir in this area is weak, and along the Haihe fracture, where the Haihe fracture intersects with the Cangdong fracture, there is a certain hydraulic conductivity. In addition, there is no obvious hydraulic connection between the Dongying formation and the upper and lower geothermal reservoirs.
The study of “water-energy-carbon” has always been an important theme in natural science. With the concern of climate change, the relationship between water and carbon has also attracted attention. China has published several policies for the water conservation, and it has begun to explore the policy transform of the water fee into water tax, which will become a key economic measure for water management. In the background of the carbon reduction, the policy may influence both the water system and the carbon system. This study mainly analyzes how future water tax affects the climate change in China by using the macroeconomic model named the computable general equilibrium model (CGE model). Two scenarios with different tax ratios have been set, and policies are implemented among different sectors. The policy will not only directly impact these industrial sectors but also indirectly impact other sectors through the economic system, which will finally do tiny contribution to the long-term climate change. The working mechanism was discussed, and policy implications were proposed at last. Firstly, China should pay attention to the impacts of macropolicies on CO2 reduction as it has set the goal of peaking carbon emissions and achieving carbon neutrality. Secondly, more study needs be carried out for the mechanisms of the “water-energy-carbon” process from the macroeconomic perspective for combing the climate change.
Groundwater plays an irreplaceable role in all aspects of the Loess Plateau. In this study, the loess phreatic water (LPW) and bedrock phreatic water (BPW) in the Ning County area (NCA) were sampled and analyzed, and the characteristics and controlling factors of groundwater were determined by using statistical analysis, hydrochemical methods, and hydrogeochemical simulation. The results indicated that the groundwater in the NCA was alkaline as a whole, and the average pH values of LPW and BPW were 8.1 and 7.8, respectively. The mean values of TDS concentrations of LPW and BPW were 314.9 mg/L and 675.3 mg/L, and the mean values of TH contents were 194.6 mg/L and 286.6 mg/L, respectively, which were mainly divided into hard fresh water. The Piper diagram illustrated that the hydrochemical type of groundwater in the NCA was mainly the HCO3·Ca type. The main recharge source of groundwater was atmospheric precipitation, and it was affected by evaporation to a certain extent. The linear relationships of δ18O and δ2H of LPW and BPW were δ2H = 6.998δ18O − 3.802 (R2 = 0.98) and δ2H = 6.283δ18O − 10.536 (R2 = 0.96), respectively. Hydrochemical analysis indicated that the groundwater in the NCA was mainly controlled by rock weathering and cation exchange. BPW was affected by the dissolution of gypsum. The possible mineral phases were identified on the basis of the main soluble minerals in the aquifer, and hydrogeochemical reverse simulations were performed. The dissolution of calcite, illite, and hornblende, and the precipitation of dolomite, plagioclase, and microcline occurred on both the LPW and BPW pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.