Research on the mechanisms that regulate milk fat synthesis in dairy cows is essential to identify potential molecular targets that in the long term can help develop appropriate molecular breeding programs. Although some studies have revealed that microRNA (miRNA) affect lipid metabolism by targeting specific genes, joint analysis of miRNA and target mRNA data from bovine mammary tissue has revealed few clues regarding the underlying mechanisms controlling milk fat synthesis. The objective of the present study was to use high-throughput sequencing and bioinformatics analysis to identify miRNA and mRNA pairs and explore further their potential roles in regulating milk fat synthesis. A total of 233 pairs of negatively associated miRNA and mRNA pairs were detected. Among those, there were 162 pairs in which the miRNAs were down-regulated and the target mRNAs were up-regulated. Among the identified miRNA, miR-106b can bind the 3′-UTR of the ATP binding cassette subfamily A member 1 (ABCA1), a gene previously identified as having a positive association with bovine milk fat synthesis. The overexpression of miR-106b in bovine mammary epithelial cells caused a decrease in triglyceride and cholesterol content while the inhibition of miR-106b increased triglyceride and cholesterol content, confirming its role in lipid metabolism. The present study allowed for the construction of a miR-106b-ABCA1 regulatory network map, thus providing a theoretical basis to target this gene in the molecular breeding of dairy cows.
Milk contains a number of beneficial fatty acids including short and medium chain and unsaturated conjugated and nonconjugated fatty acids. In this study, microRNA sequencing of mammary tissue collected in early-, peak-, mid-, and late-lactation periods was performed to determine the miRNA expression profiles. miR-16a was one of the differentially expressed miRNA and was selected for in-depth functional studies pertaining to fatty acid metabolism. The mimic of miR-16a impaired fat metabolism [triacylglycerol (TAG) and cholesterol] while knock-down of miR-16a promoted fat metabolism in vitro in bovine mammary epithelial cells (BMECs). In addition, the in vitro work with BMECs also revealed that miR-16a had a negative effect on the cellular concentration of cis 9-C18:1, total C18:1, C20:1, and C22:1 and long-chain polyunsaturated fatty acids. Therefore, these data suggesting a negative effect on fatty acid metabolism extend the discovery of the key role of miR-16a in mediating adipocyte differentiation. Through a combination of bioinformatics analysis, target gene 3′ UTR luciferase reporter assays, and western blotting, we identified large tumor suppressor kinase 1 (LATS1) as a target of miR-16a. Transfection of siRNA-LATS1 into BMECs led to increases in TAG, cholesterol, and cellular fatty acid concentrations, suggesting a positive role of LATS1 in mammary cell fatty acid metabolism. In summary, data suggest that miR-16a regulates biological processes associated with intracellular TAG, cholesterol, and unsaturated fatty acid synthesis through LATS1. These data provide a theoretical and experimental framework for further clarifying the regulation of lipid metabolism in mammary cells of dairy cows.
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle.
Bovine leukemia virus (BLV) causes enzootic leucosis in cattle and is classified into 10 genotypes with a worldwide distribution, except for several European countries, Australia, and New Zealand. Although BLV is widespread in Chinese cows with the positive rate of 49.1% at the individual level, very little is known about the BLV genotype in dairy cattle in China. To determine BLV genetic variability in cows in China, 112 BLV-positive samples from 5 cities in China were used for BLV molecular characterization in this study. Phylogenetic analysis using the neighbor-joining method on partial env sequence encoding gp51 obtained from 5 Chinese cities and those available in GenBank (n = 53, representing BLV genotype 1-10) revealed the Chinese strains belonged to genotype 6. Seven unique SNP were identified among Yancheng, Shanghai, and Bengbu strains out of the total 12 SNP identified in Chinese strains. The genotyping coupled with SNP analysis of BLV can serve as a useful molecular epidemiological tool for tracing the source of pathogens. This study highlights the importance of genetic analysis of geographically diverse BLV strains to understand BLV global genetic diversity.
Both mRNA and miRNA play an important role in the regulation of mammary fatty acid metabolism and milk fat synthesis. Although studies have shown a strong transcriptional control of fatty...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.