Previous pharmacological studies have indicated that diterpenoids are the primary effective chemical cluster in the seeds of Euphorbia lathyris L. The seed products are used in traditional Chinese medicine in the forms of Semen Euphorbiae (SE) and Semen Euphorbiae Pulveratum (SEP). However, the metabolism of the plant's diterpenoids has not been well elucidated, which means that the in vivo metabolite products have not been identified. The current study screened the physiological metabolites of six diterpenes [Euphorbia factor L 1 (L1), L 2 (L2), L 3 (L3), L 7a (L7a), L 7b (L7b), and L 8 (L8)] in feces and urine of rats after oral administration of SE and SEP using UHPLC-Q-Exactive MS. A total of 22 metabolites were detected in feces and 8 in urine, indicating that the major elimination route of diterpenoids is via the colon.Hydrolysis, methylation, and glucuronidation served as the primary metabolic pathways of these diterpenoids. In sum, this study contributed to the elucidation of new metabolites and metabolic pathways of SE and SEP, and the new chemical identities can be used to guide further pharmacokinetic studies.
The purpose of this study was to evaluate the pharmacokinetics and tissue distribution of the Corydalis yanhusuo total alkaloids transdermal patch (CTTP) following Shenque acupoint application in rats. The concentrations of corydaline, tetrahydropalmatine, tetrahydrocolumbamine, protopine, and dehydrocorydaline in rat plasma and various tissues were simultaneously detected by ultra‐performance liquid chromatography–tandem mass spectrometry after Shenque acupoint administration of CTTP. Plasma, heart, liver, spleen, lung, and kidney tissue samples were collected at specific times and separated by gradient elution on an ACQUITY UPLC HSS T3 column (1.8 μm, 100 mm × 2.1 mm) with a mobile phase of 0.01% formic acid aqueous solution and acetonitrile–0.01% formic acid. The methodological results showed that the selectivity, linear range, accuracy, precision, stability, matrix effect, and extraction recovery of the established method met the requirements of biological sample analysis. The results indicated that CTTP following Shenque acupoint administration rapidly delivered adequate drug into rat blood and maintained an effective plasma level for a significantly longer time than non‐acupoint administration. Furthermore, CTTP effectively reached the liver through Shenque acupoint administration and showed tissue selectivity. The data obtained could provide a prospect for the treatment of chronic pain with CTTP following Shenque acupoint application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.