Discovery of pulsars is one of the main goals for large radio telescopes. The Five-hundred-meter Aperture Spherical radio Telescope (FAST), that incorporates an L-band 19-beam receiver with a system temperature of about 20 K, is the most sensitive radio telescope utilized for discovering pulsars. We designed the snapshot observation mode for a FAST key science project, the Galactic Plane Pulsar Snapshot (GPPS) survey, in which every four nearby pointings can observe a cover of a sky patch of 0.1575 square degrees through beam-switching of the L-band 19-beam receiver. The integration time for each pointing is 300 seconds so that the GPPS observations for a cover can be made in 21 minutes. The goal of the GPPS survey is to discover pulsars within the Galactic latitude of ± 10° from the Galactic plane, and the highest priority is given to the inner Galaxy within ± 5°. Up to now, the GPPS survey has discovered 201 pulsars, including currently the faintest pulsars which cannot be detected by other telescopes, pulsars with extremely high dispersion measures (DMs) which challenge the currently widely used models for the Galactic electron density distribution, pulsars coincident with supernova remnants, 40 millisecond pulsars, 16 binary pulsars, some nulling and mode-changing pulsars and rotating radio transients (RRATs). The follow-up observations for confirmation of new pulsars have polarization-signals recorded for polarization profiles of the pulsars. Re-detection of previously known pulsars in the survey data also leads to significant improvements in parameters for 64 pulsars. The GPPS survey discoveries are published and will be updated at http://zmtt.bao.ac.cn/GPPS/.
Novel 3-D passive particle tracking experiments were performed in the northwest Atlantic to elucidate connectivity among areas closed to protect vulnerable marine ecosystems. We examined (1) the degree of vertical movement of particles released at different depths and locations; (2) the location of potential source populations for the deep-sea taxa protected by the closures; and (3) the degree of functional connectivity. A long-term oceanographic dataset (EN4) was queried to characterize the temperature and salinity regimes in each of the closed areas as a basis for interpreting recently published climate change projections. Using the Parcels Lagrangian particle tracking framework and the BNAM hydrodynamic model, we found enhanced connectivity over previously developed 2-D models and unexpected, current-driven, strong (to a maximum of about 1340 m) downward displacement at depth (450, 1000 and 2250 m), with weaker upward displacement except for the release depth of 2250 m which showed upward movement of 955 m with a drift duration of 3 months. The current velocities create down-stream interdependence among closed areas and allow redundancy to develop in some of the areas of the network, with some of the larger areas also showing retention. Source populations for sponges in the upstream closure are likely in adjacent waters of the Canadian continental shelf. Collectively this information can be used to inform management decisions related to the size and placement of these closed areas, and vertical velocity surfaces have potential for use in species distribution modeling of benthic species and habitats.
Fast Radio Bursts (FRBs) are the short, strong radio pulses lasting several milliseconds. They are subsequently identified, for the most part, as emanating from unknown objects at cosmological distances. At present, over one hundred FRBs have been verified, classified into two groups: repeating bursts (20 samples) and apparently non-repeating bursts (91 samples). Their origins, however, are still hotly debated. Here, we investigate the statistical classifications for the two groups of samples to see if the non-repeating and repeating FRBs have different origins by employing Anderson-Darling (A-D) test and Mann-Whitney-Wilcoxon (M-W-W) test. Firstly, by taking the pulse width as a statistical variant, we found that the repeating samples do not follow the Gaussian statistics (may belong to a χ-square distribution), although the overall data and non-repeating group do follow the Gaussian. Meanwhile, to investigate the statistical differences between the two groups, we turn to M-W-W test and notice that the two distributions have different origins. Secondly, we consider the FRB radio luminosity as a statistical variant, and find that both groups of samples can be regarded as the Gaussian distributions under the A-D test, although they have different origins according to M-W-W tests. Therefore, statistically, we can conclude that our classifications of both repeaters and non-repeaters are plausible, that the two FRB classes have different origins, or each has experienced distinctive phases or been subject to its own physical processes.
The properties of the young pulsars and their relations to the supernova remnants (SNRs) have been the interesting topics. At present, 383 SNRs in the Milky Way galaxy have been published, which are associated with 64 radio pulsars and 46 pulsars with high energy emissions. However, we noticed that 630 young radio pulsars with the spin periods of less than half a second have been not yet observed the SNRs surrounding or nearby them, which arises a question of that could the two types of young radio pulsars with/without SNRs hold the distinctive characteristics? Here, we employ the statistical tests on the two groups of young radio pulsars with (52) and without (630) SNRs to reveal if they share the different origins. Kolmogorov-Smirnov (K-S) and Mann-Whitney-Wilcoxon (M-W-W) tests indicate that the two samples have the different distributions with parameters of spin period (P), derivative of spin period ($\dot{P}$), surface magnetic field strength (B) and energy loss rate ($\dot{E}$). Meanwhile, the cumulative number ratio between the pulsars with and without SNRs at the different spindown ages decreases significantly after $\rm 10-20\, Kyr$. So we propose that the existence of the two types of supernovae (SNe), corresponding to their SNR lifetimes, which can be roughly ascribed to the low-energy and high-energy SNe. Furthermore, the low-energy SNe may be formed from the $\rm 8-12\, M_{\odot }$ progenitor, e.g., possibly experiencing the electron capture, while the main sequence stars of $\rm 12-25\, M_{\odot }$ may produce the high-energy SNe probably by the iron core collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.