The performance of cast-in-place cement concrete pavement can be greatly influenced by the surrounding environment and the quality of construction, and it requires longer curing time before opening to the traffic. The precast cement concrete pavement has the potential to address the disadvantages of using the cast-in-place cement concrete as the pavement surface material, and it also provides an alternative solution for the rapid repair of pavement damage. The current study aimed to assess the influences of geometry of full-scaled precast concrete slabs with various load transfer joint types. A numerical analysis was conducted using the finite element method to analyze the mechanical responses of the single and double slabs in accordance with the elastic thin-plate theory and the Specifications for Design of Highway Cement Concrete Pavement. Under the premise of determining the most unfavorable load position for different mechanical parameters, the mechanical response regularity under the critical loads was determined. The precast concrete pavement slab with dimensions 4 m long, 3 m wide and 0.28 m thick exhibited better mechanical responses when considering the maximum deflection and flexural stress as the evaluation index. The results indicated that the variation of joint forms has marginal influences on the maximum deflection and displacement transfer coefficient. When considering the maximum flexural stress and load transfer coefficient of the precast slabs, the circular tongue-and-groove joint form was recommended for application.
The polyphosphoric acid (PPA) modified asphalt binder is a potential choice as one of the pavement materials for its excellent high-temperature performance and low cost. To further analyze the influences of temperature and load on the service life of pavement from the perspective of deformation behavior, six kinds of asphalt binders with different PPA dosages were prepared for Multiple Stress Creep and Recovery (MSCR) tests at five temperature levels. The deformation behavior is investigated by basic deformation parameters, rheological simulation, and energy parameter changes. The results show that the percent recovery (R) drops sharply while non-recoverable creep compliance (Jnr) goes up slightly with the increase in temperature. Three-element model, composed by E1, η1, and η2, can be used to describe the creep behavior. PPA-modified asphalt binder exhibits nonlinear creep behavior, and the logarithmic model can simulate recovery behavior better than the power–law model. Stored energy and dissipated energy can characterize the change of energy in the creep process under different conditions and show a significant correlation to deformation parameters. It is concluded that the elastic component of asphalt binders is increased by PPA, which is beneficial to the improvement of the deformation resistance and recovery capacity of asphalt binders. The recommended dosage of PPA is 1.5%. This investigation is conducive to a better understanding of the deformation behavior of PPA-modified asphalt binders and provides a reference for its engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.