This paper is concerned with the construction of global measure-valued solutions to the extended Riemann problem for a non-strictly hyperbolic system of two conservation laws with delta-type initial data. The wave interaction problems have been extensively studied for all kinds of situations by using the initial condition consisting of constant states in three pieces instead of delta-type initial data under the perturbation method. The measure-valued solutions of the extended Riemann problem are achieved constructively when the perturbed parameter tends to zero. During the process of constructing solutions, a new and interesting nonlinear phenomenon is discovered, in which the initial Dirac delta function travels along the trajectory of either delta shock wave or contact discontinuity (or delta contact discontinuity). Moreover, a delta shock wave is separated into a delta contact discontinuity and a shock wave during the process of delta shock wave penetrating a composite wave composed of a rarefaction wave and a contact discontinuity. In addition, we further consider the constructions of global measure-valued solutions when the initial condition contains Dirac delta functions at two different initial points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.