Optical response in subnanometer gaps due to nonlocal response and quantum tunneling Appl. Phys. Lett. 101, 233111 (2012) Determination of optical properties of percolated nanostructures using an optical resonator system J. Appl. Phys. 112, 103536 (2012) A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared Appl.
Ribosomal biogenesis is responsible for protein synthesis in all eukaryotic cells. Perturbation of ribosomal biogenesis processes can cause dysfunctions of protein synthesis and varieties of human diseases. In this study, we examine the role of RPL15, a large ribosomal subunit protein, in human colon carcinogenesis. Our results reveal that RPL15 is remarkably upregulated in human primary colon cancer tissues and cultured cell lines when compared with paired non-cancerous tissues and non-transformed epithelium cells. Elevated expression of RPL15 in colon cancer tissues is closely correlated with clinicopathological characteristics in patients. We determine the effects of RPL15 on nucleolar maintenance, ribosomal biogenesis and cell proliferation in human cells. We show that RPL15 is required for maintenance of nucleolar structure and formation of pre-60S subunits in the nucleoli. Depletion of RPL15 causes ribosomal stress, resulting in a G1-G1/S cell cycle arrest in non-transformed human epithelium cells, but apoptosis in colon cancer cells. Together, these results indicate that RPL15 is involved in human colon carcinogenesis and might be a potential clinical biomarker and/or target for colon cancer therapy.
Several amine-based ionic liquids (ILs) were synthesized via a one-step method using low-priced organic amines and inorganic acids, and they were mixed with water to form new CO2 absorbents. The effects of the ionic structure, IL concentration, temperature, and pressure on the CO2 absorption performance were investigated. The absorption performance of ILs was closely related to the ionic structure, and the CO2 molar absorption capacity in ILs with the same cation followed the order of [NO3] > [BF4] > [SO4] or [HSO4], whereas that with the same anion ranked in the following order: multiple amine > diamine > monoamine. The IL [TETA][NO3] with 40 wt % concentration showed the best capacity for CO2 absorption. Moreover, low temperature and high pressure favored CO2 absorption. The reaction mechanism of the amine group with CO2 in aqueous solutions of [TETA][NO3], primary amine, and secondary amine was studied via in situ infrared (IR) spectrophotometry. The results showed that the primary and secondary amines first reacted with CO2 to form carbamate, which decomposed further into bicarbonate with the continuous addition of CO2. However, carbamate generated from the reaction of [TETA][NO3] with CO2 did not decompose further.
Open-framework chalcogenides with ion-exchange capacity are promising materials for removing hazardous heavymetal ions and for capturing radioactive Cs + . However, research on the exchange mechanism is limited, especially for the framework chalcogenides that have multiple bridging anions. Generally, openframework chalcogenides that have multiple bridging anions at the window or wall of the channels are rigid during the ion-exchange process. We show here that microporous sulfides with μ 3 -S 2− (where μ 3 = triple bridging mode) at the windows exhibit framework flexibility upon ion exchange. Three new microporous sulfides Na 4 Cu 8 Ge 3 S 12 •2H 2 O (1), Na 3 (Hen)Cu 8 Sn 3 S 12 (where en = ethylenediamine) (2) and (dap) 2 (Hdap) 4 Cu 8 Ge 3 S 18 (where dap = 1,2-diaminopropane) (3) were synthesized under solvothermal conditions. Compounds 1 and 2 contain a copper-rich framework composed of icosahedral [Cu 8 S 12 ] 16− units linked via monomeric GeS 4 4− or SnS 4 4− tetrahedral units, whereas compound 3 features an expanded framework composed of icosahedral [Cu 8 S 12 ] 16units interconnected with dimeric Ge 2 S 6 4− units. These compounds exhibit unusual ion-exchange properties. Specifically, the frameworks of 1 and 2 (with μ 3 -S at the small windows) show "breathing action" upon ion exchange of K + or Rb + , which have relative large sizes, and compound 3 exhibits framework flexibility upon Cs + ion exchange with both space group and channels changed.
Objectives: Patients with tuberous sclerosis complex (TSC) present multiple cortical tubers in the brain, which are responsible for epilepsy. It is still difficult to localize the epileptogenic tuber. The value of cortico-cortical evoked potentials (CCEPs) was assessed in epileptogenic tuber localization in patients with TSC using stereo-electroencephalography (SEEG).Methods: Patients with TSC who underwent SEEG and CCEP examination in preoperative evaluation during 2014–2017 and reached postoperative seizure freedom at 1-year follow-up were enrolled in this study (n = 11). CCEPs were conducted by stimulating every two adjacent contacts of SEEG electrodes and recording on other contacts of SEEG electrodes in one epileptogenic tuber and its early-stage propagating tuber, and their perituberal cortexes in each patient. The CCEP was defined as positive when N1 and/or N2 wave presented, and then the occurrence rates of positive CCEPs were then compared among different tubers and perituberal regions.Results: Occurrence rates of positive CCEP from epileptogenic tubers to early propagating tubers and epileptogenic tubers to perituberal cortexes were 100%, which were significantly higher than the occurrence rates of CCEP between other locations. The occurrence rates of CCEP from peripheral portions of epileptogenic tubers to peripheral portions of early propagating tubers or perituberal cortexes were 100%, which were significant higher than the occurrence rates of CCEP from peripheral regions of early propagating tubers to peripheral portions of epileptogenic tubers, from the central part of early propagating tuber to central portions of epileptogenic tubers, or from perituberal cortexes to the center part of epileptogenic tubers.Conclusion: Epileptogenic tubers presented much more diffusive connectivity with other tubers and perituberal cortexes than any other connectivity relationships across propagating tubers, and the peripheral region of epileptogenic tubers presented the greatest connectivity with propagating tubers and perituberal cortexes. CCEP can be an effective tool in epileptogenic tuber localization in patients with TSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.