Macrocycles are molecular entities that display a combination of molecular recognition and complexation properties with vital implications for host-guest/supramolecular chemistry. Since the accidental discovery of the crown ethers by Pedersen half a century ago, the chemistry of wholly synthetic macrocycles for structure-specific, highly selective, host-guest complexation has experienced rapid development. While the structural diversity and host-guest chemistry of the original macrocycles are well-known, new derivatives of them are being investigated continuously and reported on today in order to improve their recognition properties as well as to unleash new opportunities in supramolecular chemistry. In this Review, we survey the recent developments of the chemistry of naturally occurring cyclodextrins, along with a variety of synthetic flexible and rigid macrocycles that have drawn their inspiration from Pedersen's ground-breaking discovery of crown ethers in the mid-1960s.
Chlorogenic acids (CGAs), a group of hydroxycinnamates, are generally abundant in everyday foods and beverages, most prominently in certain coffee drinks. Among them, the chlorogenic acid (CGA), also termed as 5-O-caffeoylquinic acid (5-CQA), is one of the most abundant, highly functional polyphenolic compounds in the human diet. The evidence of its health benefits obtained from clinical studies, as well as basic research, indicates an inverse correlation between 5-CQA consumption and a lower risk of metabolic syndromes and chronic diseases. This review focuses on the beneficial properties for health and mechanisms of action of 5-CQA, starting with its history, isomers, dietary sources, processing effects, preparation methods, pharmacological safety evaluation, and bioavailability. It also provides the possible molecular mechanistic bases to explain the health beneficial effects of 5-CQA including neuroprotective, cardiovascular protective, gastrointestinal protective, renoprotective, hepatoprotective, glucose and lipid metabolism regulatory, and anticarcinogenic effects. The information summarized here could aid in the basic and clinical research on 5-CQA as a natural dietary additive, potential drug candidate, as well as a natural health promoter.
Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate.
Although complexation of hydrophilic guests inside the cavities of hydrophobic hosts is considered to be unlikely, we demonstrate herein the complexation between γ- and β-cyclodextrins (γ- and β-CDs) with an archetypal polyoxometalate (POM)--namely, the [PMo12O40](3-) trianion--which has led to the formation of two organic-inorganic hybrid 2:1 complexes, namely [La(H2O)9]{[PMo12O40]⊂[γ-CD]2} (CD-POM-1) and [La(H2O)9] {[PMo12O40]⊂[β-CD]2} (CD-POM-2), in the solid state. The extent to which these complexes assemble in solution has been investigated by (i) (1)H, (13)C, and (31)P NMR spectroscopies and (ii) small- and wide-angle X-ray scattering, as well as (iii) mass spectrometry. Single-crystal X-ray diffraction reveals that both complexes have a sandwich-like structure, wherein one [PMo12O40](3-) trianion is encapsulated by the primary faces of two CD tori through intermolecular [C-H···O═Mo] interactions. X-ray crystal superstructures of CD-POM-1 and CD-POM-2 show also that both of these 2:1 complexes are lined up longitudinally in a one-dimensional columnar fashion by means of [O-H···O] interactions. A beneficial nanoconfinement-induced stabilizing effect is supported by the observation of slow color changes for these supermolecules in aqueous solution phase. Electrochemical studies show that the redox properties of [PMo12O40](3-) trianions encapsulated by CDs in the complexes are largely preserved in solution. The supramolecular complementarity between the CDs and the [PMo12O40](3-) trianion provides yet another opportunity for the functionalization of POMs under mild conditions by using host-guest chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.