In this work, carbon nanotubes pillared grew on exfoliated graphite by the microwave-assisted method is utilized as thermally conductive fillers (CPEG) in polyimide (PI) to fabricate CPEG/PI thermally conductive composites with the combining ways of “in-situ polymerization, electrospinning, lay-up, and hot-pressing”. The prepared CPEG/PI composites realized the maximum thermal conductivity (λ, 1.92 W m−1 K−1) at low CPEG amount (10 wt%), much higher than that of pure PI (0.28 W m−1 K−1). The λ of CPEG/PI composites show almost no change after 1000 cycles of heating and cooling at the temperature of 25−100 °C. The finite element analysis simulates the nano-/microscale heat transfer in CPEG/PI composites to reveal the internal reason of the λ enhancement. The improved thermal conductivity model and empirical equation could better reflect the actual λ change trend of CPEG/PI composites. The actual application test shows the CPEG/PI composites could significantly reduce the operating temperature of the CPU in mobile phone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.