Emerging evidence suggested that upregulation of miR-155 could serve as a promising marker for the diagnosis and prognosis of non-small cell lung cancer (NSCLC). In the present study, we genotyped rs767649 (A > T) located in miR-155 regulation region in 1341 cases and 1982 controls, and analyzed the associations of rs767649 with NSCLC risk and survival. Consequently, rs767649 exhibited the significant associations with the risk (adjusted OR = 1.12, 95% CI = 1.01–1.24, P = 0.031) and prognosis of NSCLC (adjusted HR = 1.17, 95% CI = 1.03–1.32, P = 0.014). Meanwhile, rs767649 specifically interacted with radio-chemotherapy (Pint = 0.013), and patients with both the rs767649-TT genotype and radio-chemotherapy had the highest hazard ratio (adjusted HR = 1.65, 95% CI = 1.26–2.16, P < 0.001). Furthermore, using functional assays and The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma (LUAD) dataset, we found that rs767649 variant allele could increase the transcriptional activity of miR-155, which in turn facilitated tumor growth and metastasis by inhibiting HBP1, TJP1, SMAD5 and PRKAR1A expression. Our findings suggested that rs767649 A > T might contribute to the increased risk and poor prognosis of NSCLC, highlighting the importance of rs767649 in the prevention and therapy of NSCLC.
BackgroundThe T790M mutation of epithelial growth factor receptor (EGFR) is a major cause of the acquired resistance to EGFR tyrosine kinase inhibitor (EGFR-TKIs) treatment for lung cancer patients. The Hippo pathway effector, TAZ, has emerged as a key player in organ growth and tumorigenesis, including lung cancer.ResultsIn this study, we have discovered high TAZ expression in non-small cell lung cancer (NSCLC) cells harboring dual mutation and TAZ depletion sensitized their response to EGFR-TKIs. Mechanistically, knockdown of TAZ in T790M-induced resistant cells leaded to reduced anchorage-independent growth in vitro, tumor formation and resistance to gefitinib in vivo, correlated with epithelial-mesenchymal transition (EMT) and suppressed migration and invasion. Furthermore, we confirmed CTGF and AXL, novel EMT markers and potential therapeutic targets for overcoming EGFR inhibitor resistance, as directly transcriptional targets of TAZ.ConclusionsTaken together, this study suggests that expression of TAZ is an intrinsic mechanism of T790M-induced resistance in response to EGFR-TKIs. Combinational targeting on both EGFR and TAZ may enhance the efficacy of EGFR-TKIs in acquired resistance of NSCLC.Electronic supplementary materialThe online version of this article (doi:10.1186/2045-3701-5-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.