The mechanism of biomembrane curvature generation has been studied for decades because of its role in many cellular functions. In this article, N-varied dissipative particle dynamics was used to investigate the relationship between membrane curvature generation and self-assembly of anchored proteins, and a protein aggregation mechanism of curvature generation was proposed. According to the mechanism, the curvature production is enhanced by the self-assembly of proteins, and the enhancement depends on the protein hydrophobic length. Contrary to the theoretic predictions that shallow insertion depth of proteins is more effective in producing positive membrane curvature, our simulations show the opposite trend if the self-assembly of proteins is taken into account. Furthermore, for the membrane proteins with deep insertion, simulations indicate that the self-assembly of proteins may induce membrane vesiculation at negative membrane tensions. In addition, the protein aggregates can sense the membrane curvature, although the way they respond to the local curvature again depends on the protein hydrophobic length. Especially, the self-assembly of shallow inserting proteins is significantly affected by the local membrane curvature.
In this work, the kinetic process of collision-driven solute exchange in an aqueous phase in which micelles are used as solute carriers is investigated by dissipative particle dynamics simulations. Here, we try to answer two questions about the exchange process of hydrophobic solute molecules: How the solute molecules are exchanged and what factors affect the process. For the first question, the simulation results indicate that, after a stage of intermittent collision between two neighboring aggregates, there are roughly three sequential events in a coalescence stage: (1) molecular contact, (2) neck formation, and (3) neck growth. The coalescence stage is followed by a stage of solute transfer and diffusion. It is found that there are two rate-limiting steps in the whole process of solute exchange, i.e., the break of the water film between two neighboring aggregates and the nucleation of a pore between two surfactant films. For the second question, the effects of the collision velocity, the surface tension, the repulsive interaction between the surfactant films of the colliding aggregates, as well as the steric repulsion are examined. For example, the simulation results show that the depletion force plays an important role during the coalescence stage, while the initial collision velocity basically does not change the fusion ratio. The results also demonstrate that the surface tension and interaction show different effects on the different stages of a solute exchange process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.