Monolayer vanadium trihalides show stable 2D intrinsic ferromagnetism, half-metallicity and Dirac point.
Several critical issues, such as the shuttling effect and the sluggish reaction kinetics, exist in the design of high‐performance lithium–sulfur (Li‐S) batteries. Here, it is reported that nitrogen doping can simultaneously and significantly improve both the immobilization and catalyzation effects of Co9S8 nanoparticles in Li‐S batteries. Combining the theoretical calculations with experimental investigations, it is revealed that nitrogen atoms can increase the binding energies between LiPSs and Co9S8, and as well as alleviate the sluggish kinetics of Li‐S chemistry in the Li2S6 cathode. The same effects are also observed when adding N‐Co9S8 nanoparticles into the commercial Li2S cathode (which has various intrinsic advantages, but unfortunately a high overpotential). A remarkable improvement in the battery performances in both cases is observed. The work brings heteroatom‐doped Co9S8 to the attention of designing high‐performance Li‐S batteries. A fundamental understanding of the inhibition of LiPSs shuttle and the catalytic effect of Li2S in the newly developed system may encourage more effort along this interesting direction.
Three two-dimensional phosphorus nitride (PN) monolayer sheets (named as α-, β-, and γ-PN, respectively) with fantastic structures and properties are predicted based on first-principles calculations. The α-PN and γ-PN have a buckled structure, whereas β-PN shows puckered characteristics. Their unique structures endow these atomic PN sheets with high dynamic stabilities and anisotropic mechanical properties. They are all indirect semiconductors and their band gap sensitively depends on the in-plane strain. Moreover, the nanoribbons patterned from these three PN monolayers demonstrate a remarkable quantum size effect. In particular, the zigzag α-PN nanoribbon shows size-dependent ferromagnetism. Their significant properties show potential in nano-electronics. The synthesis of the three phases of the PN monolayer sheet is proposed theoretically, which is deserving of further study in experiments.
Although there is an agreement about the local structural order of semiconducting polymers such as poly(3-hexylthiophene) (P3HT), there is still a debate over the impact of molecular doping. One prevalent interpretation is that dopant molecules intercalate in the π–π stacking of crystallites; however, this idea has recently been challenged. We present here electron diffraction measurements of P3HT doped with the two dopants 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3), which have considerably different sizes and shapes, processed by different doping techniques. We observe a reduction in the π–π spacing of P3HT upon doping with both dopant molecules and doping techniques. These data are not consistent with both of the dopants intercalating in the π–π stacks and an alternative explanation is, therefore, required to explain these results. Density functional theory calculations for P3HT model oligomers suggest that the polaron delocalizes between adjacent chains and thus leads to attractive forces that reduce the π–π spacing, without the physical presence of any dopant molecules. Our study emphasizes that not only geometric effects induced by dopant molecules lead to the observed reduction of π–π spacing, but the charging itself.
Nickel oxide (NiO) is a widely used material for efficient hole extraction in optoelectronic devices. However, its surface characteristics strongly depend on the processing history and exposure to adsorbates. To achieve controllability of the electronic and chemical properties of solution-processed nickel oxide (sNiO), we functionalize its surface with a self-assembled monolayer (SAM) of 4-cyanophenylphosphonic acid. A detailed analysis of infrared and photoelectron spectroscopy shows the chemisorption of the molecules with a nominal layer thickness of around one monolayer and gives an insight into the chemical composition of the SAM. Density functional theory calculations reveal the possible binding configurations. By the application of the SAM, we increase the sNiO work function by up to 0.8 eV. When incorporated in organic solar cells, the increase in work function and improved energy level alignment to the donor does not lead to a higher fill factor of these cells. Instead, we observe the formation of a transport barrier, which can be reduced by increasing the conductivity of the sNiO through doping with copper oxide. We conclude that the widespread assumption of maximizing the fill factor by only matching the work function of the oxide charge extraction layer with the energy levels in the active material is a too narrow approach. Successful implementation of interface modifiers is only possible with a sufficiently high charge carrier concentration in the oxide interlayer to support efficient charge transfer across the interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.