Graphitic carbon nitride (g-C3N4), a metal-free and visible light responsive photocatalyst, has garnered much attention due to its wide range of applications. In order to elucidate the role of dimensionality on the properties of photo-generated charge carriers, we apply nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory to investigate nonradiative relaxation of hot electrons and holes, and electron–hole recombination in monolayer and bulk g-C3N4. The nonradiative charge recombination occurs on a nanosecond timescale and is faster in bulk than the nanosheet, in agreement with the experiment. The difference arises due to the smaller energy gap and participation of additional vibrations in the bulk system. The long carrier lifetimes are favored by small NA coupling and rapid phonon-induced loss of quantum coherence between the excited and ground electronic states. Decoherence is fast because g-C3N4 is soft and undergoes large scale vibrations. The NA coupling is small since electrons and holes are localized on different atoms, and the electron–hole overlap is relatively small. Phonon-driven relaxation of hot electrons and holes takes 100–200 fs and is slightly slower at higher initial energies due to participation of fewer vibrational modes. This feature of two-dimensional g-C3N4 contrasts traditional three-dimensional semiconductors, which exhibit faster relaxation at higher energies due to larger density of states, and can be used to extract hot carriers to perform useful functions. The ab initio quantum dynamics simulations present a comprehensive picture of the photo-induced charge carrier dynamics in g-C3N4, guiding design of photovoltaic and photocatalytic devices.
Graphitic carbon nitride (GCN) has attracted significant attention due to its excellent performance in photocatalytic applications. Non-metal doping of GCN has been widely used to improve the efficiency of the material as a photocatalyst. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we study the charge carrier dynamics in oxygen and boron doped GCN systems. The reported simulations provide a detailed time-domain mechanistic description of the charge separation and recombination processes that are of fundamental importance while evaluating the photovoltaic and photocatalytic performance of the material. The appearance of smaller energy gaps due to the presence of dopant states improves the visible light absorption range of the doped systems. At the same time, the nonradiative lifetimes are shortened in the doped systems as compared to the pristine GCN. In the case of boron doped at a carbon (B–C–GCN), the charge recombination time is very long as compared to the other two doped systems owing to the smaller electron–phonon coupling strength between the valence band maximum and the trap state. The results suggest B–C–GCN as the most suitable candidate among three doped systems studied in this work for applications in photocatalysis. This work sheds light into the influence of dopants on quantum dynamics processes that govern GCN performance and, thus, guides toward building high-performance devices in photocatalysis.
Significant efforts are focused on defect-engineering of metal-free graphitic carbon nitride (g-C 3 N 4 ) to amplify its efficacy. A conceptually new multidefect-modified g-C 3 N 4 having simultaneously two or more defects has attracted strong attention for its enhanced photocatalytic properties. We model and compare the excited state dynamics in g-C 3 N 4 with (i) nitrogen defects (N vacancy and CN group) and (ii) dual defects (N vacancy, CN group, and O doping) and show that the nonradiative recombination of charge carriers in these systems follows the Shockley−Read−Hall mechanism. The nitrogen defects create three midgap states that trap charges and act as recombination centers. The dual-defect modified systems exhibit superior properties compared with pristine g-C 3 N 4 because the defects facilitate rapid charge separation and extend the spectrum of absorbed light. The system doped with O shows better performance due to enhanced carrier lifetime and higher oxidation potential caused by a downshifted valence band. The study provides guidance for rational design of stable and efficient photocatalytic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.