Abstract-Dominance -a behavioral expression of power -is a fundamental mechanism of social interaction, expressed and perceived in conversations through spoken words and audio-visual nonverbal cues. The automatic modeling of dominance patterns from sensor data represents a relevant problem in social computing. In this paper, we present a systematic study on dominance modeling in group meetings from fully automatic nonverbal activity cues, in a multi-camera, multi-microphone setting. We investigate efficient audio and visual activity cues for the characterization of dominant behavior, analyzing single and joint modalities. Unsupervised and supervised approaches for dominance modeling are also investigated. Activity cues and models are objectively evaluated on a set of dominance-related classification tasks, derived from an analysis of the variability of human judgment of perceived dominance in group discussions. Our investigation highlights the power of relatively simple yet efficient approaches and the challenges of audio-visual integration. This constitutes the most detailed study on automatic dominance modeling in meetings to date.
The automated extraction of semantically meaningful information from multi-modal data is becoming increasingly necessary due to the escalation of captured data for archival. A novel area of multi-modal data labelling, which has received relatively little attention, is the automatic estimation of the most dominant person in a group meeting. In this paper, we provide a framework for detecting dominance in group meetings using different audio and video cues. We show that by using a simple model for dominance estimation we can obtain promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.