Abstract-Dominance -a behavioral expression of power -is a fundamental mechanism of social interaction, expressed and perceived in conversations through spoken words and audio-visual nonverbal cues. The automatic modeling of dominance patterns from sensor data represents a relevant problem in social computing. In this paper, we present a systematic study on dominance modeling in group meetings from fully automatic nonverbal activity cues, in a multi-camera, multi-microphone setting. We investigate efficient audio and visual activity cues for the characterization of dominant behavior, analyzing single and joint modalities. Unsupervised and supervised approaches for dominance modeling are also investigated. Activity cues and models are objectively evaluated on a set of dominance-related classification tasks, derived from an analysis of the variability of human judgment of perceived dominance in group discussions. Our investigation highlights the power of relatively simple yet efficient approaches and the challenges of audio-visual integration. This constitutes the most detailed study on automatic dominance modeling in meetings to date.
In this paper, we propose and demonstrate a novel wireless camera network system, called CITRIC. The core component of this system is a new hardware platform that integrates a camera, a frequency-scalable (up to 624 MHz) CPU, 16 MB FLASH, and 64 MB RAM onto a single device. The device then connects with a standard sensor network mote to form a camera mote. The design enables in-network processing of images to reduce communication requirements, which has traditionally been high in existing camera networks with centralized processing. We also propose a back-end client/server architecture to provide a user interface to the system and support further centralized processing for higher-level applications. Our camera mote enables a wider variety of distributed pattern recognition applications than traditional platforms because it provides more computing power and tighter integration of physical components while still consuming relatively little power. Furthermore, the mote easily integrates with existing low-bandwidth sensor networks because it can communicate over the IEEE 802.15.4 protocol with other sensor network platforms. We demonstrate our system on three applications: image compression, target tracking, and camera localization.
Intrinsic image decomposition is an important problem that targets the recovery of shading and reflectance components from a single image. While this is an ill-posed problem on its own, we propose a novel approach for intrinsic image decomposition using a reflectance sparsity prior that we have developed. Our method is based on a simple observation: neighboring pixels usually have the same reflectance if their chromaticities are the same or very similar. We formalize this sparsity constraint on local reflectance, and derive a sparse representation of reflectance components using data-driven edge-avoiding-wavelets. We show that the reflectance component of natural images is sparse in this representation. We also propose and formulate a novel global reflectance sparsity constraint. Using this sparsity prior and global constraints, we formulate a l 1 -regularized least squares minimization problem for intrinsic image decomposition that can be solved efficiently. Our algorithm can successfully extract intrinsic images from a single image, without using other reflection or color models or any user interaction. The results on challenging scenes demonstrate the power of the proposed technique.
The automated extraction of semantically meaningful information from multi-modal data is becoming increasingly necessary due to the escalation of captured data for archival. A novel area of multi-modal data labelling, which has received relatively little attention, is the automatic estimation of the most dominant person in a group meeting. In this paper, we provide a framework for detecting dominance in group meetings using different audio and video cues. We show that by using a simple model for dominance estimation we can obtain promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.