Species tree reconstruction from genomic data is increasingly performed using methods that account for sources of gene tree discordance such as incomplete lineage sorting. One popular method for reconstructing species trees from unrooted gene tree topologies is ASTRAL. In this paper, we derive theoretical sample complexity results for the number of genes required by ASTRAL to guarantee reconstruction of the correct species tree with high probability. We also validate those theoretical bounds in a simulation study. Our results indicate that ASTRAL requires gene trees to reconstruct the species tree correctly with high probability where is the number of species and is the length of the shortest branch in the species tree. Our simulations, some under the anomaly zone, show trends consistent with the theoretical bounds and also provide some practical insights on the conditions where ASTRAL works well.
In this paper, the problem of maximizing a black-box function f : X → R is studied in the Bayesian framework with a Gaussian Process (GP) prior. In particular, a new algorithm for this problem is proposed, and high probability bounds on its simple and cumulative regret are established. The query point selection rule in most existing methods involves an exhaustive search over an increasingly fine sequence of uniform discretizations of X . The proposed algorithm, in contrast, adaptively refines X which leads to a lower computational complexity, particularly when X is a subset of a high dimensional Euclidean space. In addition to the computational gains, sufficient conditions are identified under which the regret bounds of the new algorithm improve upon the known results. Finally an extension of the algorithm to the case of contextual bandits is proposed, and high probability bounds on the contextual regret are presented.
In this paper, we consider the problem of using a robot to explore an environment with an unknown, state-dependent disturbance function while avoiding some forbidden areas. The goal of the robot is to safely collect observations of the disturbance and construct an accurate estimate of the underlying disturbance function. We use Gaussian Process (GP) to get an estimate of the disturbance from data with a high-confidence bound on the regression error. Furthermore, we use neural Contraction Metrics to derive a tracking controller and the corresponding high-confidence uncertainty tube around the nominal trajectory planned for the robot, based on the estimate of the disturbance. From the robustness of the Contraction Metric, error bound can be pre-computed and used by the motion planner such that the actual trajectory is guaranteed to be safe. As the robot collects more and more observations along its trajectory, the estimate of the disturbance becomes more and more accurate, which in turn improves the performance of the tracking controller and enlarges the free space that the robot can safely explore. We evaluate the proposed method using a carefully designed environment with a ground vehicle. Results show that with the proposed method the robot can thoroughly explore the environment safely and quickly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.