Abstract.-Species tree estimation from loci sampled from multiple genomes is now common, but is challenged by the heterogeneity across the genome due to multiple processes, such as gene duplication and loss, horizontal gene transfer, and incomplete lineage sorting.Although methods for estimating species trees have been developed that address gene tree heterogeneity due to incomplete lineage sorting, many of these methods operate by combining estimated gene trees and are hence vulnerable to gene tree quality. There is also the added concern that missing data, which is frequently encountered in genome-scale datasets, will impact species tree estimation..
CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/149120 doi: bioRxiv preprint first posted online Jun. 12, 2017; Our study addresses the impact of gene filtering on species trees inferred from multigene datasets. We address these questions using a large and heterogeneous collection of simulated datasets both with and without missing data. We compare several established coalescent-based methods (ASTRAL, ASTRID, MP-EST, and SVDquartets within PAUP*) as well as unpartitioned concatenation using maximum likelihood (RAxML).Our study shows that gene tree error and missing data impact all methods (and some methods degrade more than others), but the degree of incomplete lineage sorting and gene tree estimation error impacts the absolute and relative performance of methods as well as their response to gene filtering strategies. We find that filtering genes based on the degree of missing data is either neutral or else reduces the accuracy of all five methods examined, and so is not recommended. Filtering genes based on gene tree estimation error shows somewhat different trends. Under low levels of incomplete lineage sorting, removing genes with high gene tree estimation error can improve the accuracy of summary methods, but only if not too many genes are removed. Otherwise, filtering genes tends to increase error, especially under high levels of incomplete lineage sorting. Hence, while filtering genes based on missing data is not recommended, there are conditions under which removing high error gene trees can improve species tree estimation. This study provides insights into prior studies and suggests approaches for analyzing phylogenomic datasets.(Keywords: species tree estimation, multi-species coalescent, incomplete lineage sorting, gene tree estimation error, missing data) Species tree estimation is greatly enabled through the use of multiple loci, and increased access to genomic data over the last decade has opened up the possibility of greatly improving our understanding of how life has evolved on earth (Posada 2016). Furthermore, . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/149120 doi: bioR...