Acoustic Scene Classification (ASC) refers to the task of assigning a semantic label to an audio stream that characterizes the environment in which it was recorded. In recent times, Deep Neural Networks (DNNs) have emerged as the model of choice for ASC. However, in real world scenarios, domain adaptation remains a persistent problem for ASC models. In the search for an optimal solution to the said problem, we explore a metric learning approach called prototypical networks using the TUT Urban Acoustic Scenes dataset, which consists of 10 different acoustic scenes recorded across 10 cities. In order to replicate the domain adaptation scenario, we divide the dataset into source domain data consisting of data samples from eight randomly selected cities and target domain data consisting of data from the remaining two cities. We evaluate the performance of the network against a selected baseline network under various experimental scenarios and based on the results we conclude that metric learning is a promising approach towards addressing the domain adaptation problem in ASC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.