SummaryAuxin response factors (ARFs) bind auxin response promoter elements and mediate transcriptional responses to auxin. Five of the 22 ARF genes in Arabidopsis thaliana encode ARFs with glutamine-rich middle domains. Four of these can activate transcription and have been ascribed developmental functions. We show that ARF19, the fifth Q-rich ARF, also activates transcription. Mutations in ARF19 have little effect on their own, but in combination with mutations in NPH4/ARF7, encoding the most closely related ARF, they cause several phenotypes including a drastic decrease in lateral and adventitious root formation and a decrease in leaf cell expansion. These results indicate that auxin induces lateral roots and leaf expansion by activating NPH4/ARF7 and ARF19. Auxin induces the ARF19 gene, and NPH4/ARF7 and ARF19 together are required for expression of one of the arf19 mutant alleles, suggesting that a positive feedback loop regulates leaf expansion and/or lateral root induction.
The production and distribution of plant trichomes is temporally and spatially regulated. After entering into the flowering stage, Arabidopsis thaliana plants have progressively reduced numbers of trichomes on the inflorescence stem, and the floral organs are nearly glabrous. We show here that SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, which define an endogenous flowering pathway and are targeted by microRNA 156 (miR156), temporally control the trichome distribution during flowering. Plants overexpressing miR156 developed ectopic trichomes on the stem and floral organs. By contrast, plants with elevated levels of SPLs produced fewer trichomes. During plant development, the increase in SPL transcript levels is coordinated with the gradual loss of trichome cells on the stem. The MYB transcription factor genes TRICHOMELESS1 (TCL1) and TRIPTYCHON (TRY) are negative regulators of trichome development. We show that SPL9 directly activates TCL1 and TRY expression through binding to their promoters and that this activation is independent of GLABROUS1 (GL1). The phytohormones cytokinin and gibberellin were reported to induce trichome formation on the stem and inflorescence via the C2H2 transcription factors GIS, GIS2, and ZFP8, which promote GL1 expression. We show that the GIS-dependent pathway does not affect the regulation of TCL1 and TRY by miR156-targeted SPLs, represented by SPL9. These results demonstrate that the miR156-regulated SPLs establish a direct link between developmental programming and trichome distribution.
SummaryTranscription factors regulate multiple aspects of plant growth and development. Here we report the identification and functional analysis of a plant-specific, novel transcription factor in Arabidopsis. We isolated a dominant, gain-of-function mutant that displays reduced lengths in all aerial organs including hypocotyl, rosette leaf, cauline leaf, inflorescence stem, floral organs and silique. Molecular cloning revealed that these phenotypes are caused by elevated expression of the Arabidopsis thaliana Ovate Family Protein 1 (AtOFP1). This mutant was designated as Atofp1-1D. We show that the altered morphology of Atofp1-1D mutant is caused by reduced cell length resulting from reduced cell elongation, and demonstrate that a mutant harboring a transposon insertion that disrupts the OVATE domain of AtOFP1 is indistinguishable from wild-type plants. Plants overexpressing other closely related AtOFP genes phenocopy plants overexpressing AtOFP1, implying a possible overlapping function among members of the AtOFP gene family. We found that AtOFP1 localizes in the nucleus, and that AtOFP1 functions as an active transcriptional repressor. Chromatin immunoprecipitation results indicated that AtGA20ox1, a gene encoding the key enzyme in GA biosynthesis, is a target gene regulated by AtOFP1. Consistent with this, exogenous gibberellic acid can partially restore defects in cell elongation in plants overexpressing AtOFP1, suggesting that such a reduced cell elongation is caused, in part, by the deficiency in gibberellin biosynthesis. Taken together, our results indicate that AtOFP1 is an active transcriptional repressor that has a role in regulating cell elongation in plants.
The patterning of epidermal cell types in Arabidopsis is a simple and useful model for studying the molecular basis of cell specification in plants. The distribution of different cell types in the Arabidopsis epidermis is regulated by a lateral inhibition mechanism that relies on interactions between transcription factors. However, it is unclear how temporal-or organ-specific differences in epidermal patterning are achieved. Here we identify TRICHOMELESS1 (TCL1) as a new and major single-repeat MYBtype transcription factor that negatively regulates trichome formation in the inflorescence epidermis. A dominant mutant with elevated expression of TCL1 has a glabrous (trichomeless) phenotype, whereas a loss-of-function mutation in TCL1 uniquely confers ectopic trichome formation on inflorescence stem and pedicels. Genetic analyses demonstrate that TCL1 and CAPRICE work synergistically to regulate trichome patterning on these organs. Interestingly, overexpression of TCL1 specifically suppresses the expression of GLABRA1 (GL1), a crucial component in the trichome initiation complex, whereas loss-of-function of TCL1 enhances GL1 expression. Chromatin immunoprecipitation results show that TCL1 can be recruited to the cis-acting regulatory elements of GL1. These results provide the first molecular and genetic evidence that an R3 MYB may negatively regulate trichome cell specification in a novel manner by directly suppressing the transcription of GL1.
Seed germination is regulated by many signals. We investigated the possible involvement of a heterotrimeric G protein complex in this signal regulation. Seeds that carry a protein null mutation in the gene encoding the alpha subunit of the G protein in Arabidopsis (GPA1) are 100-fold less responsive to gibberellic acid (GA), have increased sensitivity to high levels of Glc, and have a near-wild-type germination response to abscisic acid and ethylene, indicating that GPA1 does not directly couple these signals in germination control. Seeds ectopically expressing GPA1 are at least a million-fold more responsive to GA, yet still require GA for germination. We conclude that the GPA1 indirectly operates on the GA pathway to control germination by potentiation. We propose that this potentiation is directly mediated by brassinosteroids (BR) because the BR response and synthesis mutants, bri1-5 and det2-1, respectively, share the same GA sensitivity as gpa1 seeds. Furthermore, gpa1 seeds are completely insensitive to brassinolide rescue of germination when the level of GA in seeds is reduced. A lack of BR responsiveness is also apparent in gpa1 roots and hypocotyls suggesting that BR signal transduction is likely coupled by a heterotrimeric G protein at various points in plant development.Seeds integrate many intrinsic signals to control germination (Koornneef et al., 2002). For example, since the original observation by Chrispeels and Varner (1966), it has been repeatedly shown that GA induces germination and that abscisic acid (ABA) antagonizes the GA effect (Koornneef and Van der Veen, 1980;Karssen et al., 1989; Gilroy and Jones, 1994;Ritchie and Gilroy, 1998;Lovegrove and Hooley, 2000). Seed germination of GA synthesis mutants can be rescued by the application of GA and ABA synthesis and insensitive mutants lack the ABA inhibition of GA-induced germination as well as being viviparous (Koornneef et al., 1982(Koornneef et al., , 1984 Finkelstein and Somerville, 1990;Koornneef and Karssen, 1994;Leon-Kloosterziel et al., 1996). Brassinosteroid (BR) probably acts downstream of GA because BR is able to rescue germination of GA-deficient (Steber and McCourt, 2001) and GA response (Steber et al., 1998) mutant seeds. These authors argue that the BR input is likely to reside upstream of ABA's attenuating effect on GA-induced germination because BR synthesis and response mutants have slightly altered ABA sensitivity.The inhibitory effect of high concentrations of sugars on germination may occur via ABA. The evidence supporting this comes from measurements of ABA in Glc-treated seedlings (Arenas-Huertero et al., 2000) and from the observation that ABA synthesis and response mutants are insensitive to Glc (Laby et al., 2000;Rook et al., 2001). Ethylene controls the Glc inhibition of germination (Zhou et al., 1998). Evidence supporting this includes the observations that high concentrations of ethylene antagonize the Glc repression of germination (Ghassemian et al., 2000), the ctr1 (constitutive ethylene response mutant; Gibs...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.