We report a combined theoretical and experimental study on photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Samples of monolayer phosphorene and bulk black phosphorus were fabricated by mechanical exfoliation, identified according to their reflective contrasts, and protected by covering them with hexagonal boron nitride layers. Photocarrier dynamics in these samples was studied by an ultrafast pump-probe technique. The photocarrier lifetime of monolayer phosphorene was found to be about 700 ps, which is about 9 times longer than that of bulk black phosphorus. This trend was reproduced in our calculations based on ab initio nonadiabatic molecular dynamics combined with time-domain density functional theory in the Kohn-Sham representation, and can be attributed to the smaller bandgap and stronger nonadiabatic coupling in bulk. The transient absorption response was also found to be dependent on the sample orientation with respect to the pump polarization, which is consistent with the previously reported anisotropic absorption of phosphorene. In addition, an oscillating component of the differential reflection signal at early probe delays was observed in the bulk sample and was attributed to the layer-breathing phonon mode with an energy of about 1 meV and a decay time of about 1.35 ps. These results provide valuable information for application of monolayer phosphorene in optoelectronics.
In this Letter, we demonstrate a nonlinear-mirror (NLM) mode-locked diode-pumped solid-state Nd:YVO4 laser operating at 1342 nm, in which the NLM comprises a periodically poled LiNbO3 crystal and a dichroic mirror. The self-starting threshold for cw mode locking is 1.5 W, which is significantly lower than that of saturable absorber mode locking. An average power of 1.52 W at 1342 nm is obtained under diode pump power of 10 W at 808 nm, with the slope efficiency being up to 16.8%. The pulse width and the repetition rate of the mode-locked laser output are about 9.5 ps and 101 MHz, respectively.
High quality and stable electrical contact between metal and two-dimensional materials, such as transition metal dichalcogenides, is a necessary requirement that has yet to be achieved in order to successfully exploit the advantages that these materials offer to electronics and optoelectronics. MoTe 2 , owing to its phase changing property, can potentially offer a solution. A recent study demonstrated that metallic phase of MoTe 2 connects its semiconducting phase with very low resistance. To utilize this property to connect other two-dimensional materials, it is important to achieve efficient charge transfer between MoTe 2 and other semiconducting materials. Using MoS 2 as an example, we report ultrafast and efficient charge transfer between MoTe 2 and MoS 2 monolayers. In the transient absorption measurements, an ultrashort pump pulse is used to selectively excite electrons in MoTe 2 . The appearance of the excited electrons in the conduction band of MoS 2 is monitored by using a probe pulse that is tuned to the resonance of MoS 2 . We found that electrons transfer to MoS 2 on a time scale of at most 0.3 ps. The transferred electrons give rise to a large transient absorption signal at both A-exciton and B-exciton resonances due to the screening effect. We also observed ultrafast transfer of holes from MoS 2 to MoTe 2 . Our results suggest the feasibility of using MoTe 2 as a bridge material to connect MoS 2 and other transition metal dichalcogenides, and demonstrate a new transition metal dichalcogenide heterostructure involving MoTe 2 , which extends the spectral range of such structures to infrared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.