The Dirac and Weyl semimetals are unusual materials in which the nodes of the bulk states are protected against gap formation by crystalline symmetry. The chiral anomaly, predicted to occur in both systems, was recently observed as a negative longitudinal magnetoresistance (LMR) in NaBi (ref. ) and in TaAs (ref. ). An important issue is whether Weyl physics appears in a broader class of materials. We report evidence for the chiral anomaly in the half-Heusler GdPtBi. In zero field, GdPtBi is a zero-gap semiconductor with quadratic bands. In a magnetic field, the Zeeman energy leads to Weyl nodes. We have observed a large negative LMR with the field-steering properties specific to the chiral anomaly. The chiral anomaly also induces strong suppression of the thermopower. We report a detailed study of the thermoelectric response function α of Weyl fermions. The scheme of creating Weyl nodes from quadratic bands suggests that the chiral anomaly may be observable in a broad class of semimetals.
In the Dirac/Weyl semimetal, the chiral anomaly appears as an "axial" current arising from charge-pumping between the lowest (chiral) Landau levels of the Weyl nodes, when an electric field is applied parallel to a magnetic field B. Evidence for the chiral anomaly was obtained from the longitudinal magnetoresistance (LMR) in Na3Bi and GdPtBi. However, current jetting effects (focussing of the current density J) have raised general concerns about LMR experiments. Here we implement a litmus test that allows the intrinsic LMR in Na3Bi and GdPtBi to be sharply distinguished from pure current jetting effects (in pure Bi). Current jetting enhances J along the mid-ridge (spine) of the sample while decreasing it at the edge. We measure the distortion by comparing the local voltage drop at the spine (expressed as the resistance Rspine) with that at the edge (R edge ). In Bi, Rspine sharply increases with B but R edge decreases (jetting effects are dominant). However, in Na3Bi and GdPtBi, both Rspine and R edge decrease (jetting effects are subdominant). A numerical simulation allows the jetting distortions to be removed entirely. We find that the intrinsic longitudinal resistivity ρxx(B) in Na3Bi decreases by a factor of 10.9 between B = 0 and 10 T. A second litmus test is obtained from the parametric plot of the planar angular magnetoresistance. These results strenghthen considerably the evidence for the intrinsic nature of the chiral-anomaly induced LMR. We briefly discuss how the squeeze test may be extended to test ZrTe5.arXiv:1802.01544v2 [cond-mat.str-el]
Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.
Chiral anomaly, a non-conservation of chiral charge pumped by the topological nontrivial gauge fields, has been predicted to exist in Weyl semimetals. However, until now, the experimental signature of this effect exclusively relies on the observation of negative longitudinal magnetoresistance at low temperatures. Here, we report the field-modulated chiral charge pumping process and valley diffusion in Cd3As2. Apart from the conventional negative magnetoresistance, we observe an unusual nonlocal response with negative field dependence up to room temperature, originating from the diffusion of valley polarization. Furthermore, a large magneto-optic Kerr effect generated by parallel electric and magnetic fields is detected. These new experimental approaches provide a quantitative analysis of the chiral anomaly phenomenon which was inaccessible previously. The ability to manipulate the valley polarization in topological semimetal at room temperature opens up a route towards understanding its fundamental properties and utilizing the chiral fermions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.