Coal permeability is a key parameter that affects the drainage of coal bed methane (CBM). Owing to the lower original permeability of coal seams in China, more attention was paid to the study of damage‐induced permeability laws. However, the theory of damage‐induced permeability still needs to be improved. In this paper, the permeability evolution experiments during the complete stress–strain process of coal were carried out firstly. The results are shown that with the increase in axial strain, the coal permeability decreases slowly at first, then increases rapidly, and finally increases slowly or even remains unchanged, and the peak stress point can be regarded as the extreme point of permeability. Then, the equivalent plastic strain was used to describe the damage of coal. Based on the above results, a new damage‐induced permeability model was developed, and the new model can match the experimental data of permeability very well. In addition, solid–gas coupling models of coal were developed based on the new permeability model, and the numerical results show that there is a region of sudden increase in permeability around the borehole where plastic failure occurs, which indicates that the damage‐induced permeability model is reasonable. Finally, the results of numerical simulation of gas predrainage in combination of soft coal and hard coal under different cases were used to optimize the borehole layout of gas predrainage in the field.
The composite materials in the form of (1-x)BaTiO 3 -xSrFe 0.5 Nb 0.5 O 3 ((1-x)BT-xSFN) are synthesized via the solid-state reaction route. Structure, optical behaviors and electrical properties of (1-x)BT-xSFN are studied. It can be noted that the structure of the synthesized solid solution changes from the tetragonal phase to the cubic phase with increase of x-value. Due to the increase in content of double perovskite SFN, the optical band gaps of doped BT decrease to a minimum of 2.66 eV, which is smaller than that of pure BT (3.21 eV). However, the ferroelectric property deteriorates with the addition of dopants, which result from the lattice distortion caused by the substitution of Sr 2+ and Fe 3+ /Nb 5+ for Ba 2+ and Ti 4+ , respectively. These results provide new insights into the control of the structure, optical behaviors and ferroelectric properties in BT-based oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.