We report the demonstration of a germanium-tin (GeSn) multiple-quantum-well p-i-n photodiode on silicon (Si) substrate for 2 μm-wavelength light detection. Characterization of the photodetector in both direct current (DC) and radio frequency (RF) regimes was performed. At the bias voltage of -1 V, a dark current density of 0.031 A/cm is realized at room-temperature, which is among the lowest reported values for GexSnx-on-Si p-i-n photodiodes. In addition, for the first time, a 3 dB bandwidth (f3dB) of around 1.2 GHz is achieved in GexSnx photodetectors operating at 2 μm. It is anticipated that further device optimization would extend the f3dB to above 10 GHz.
We present a theoretical and experimental study of high-index-contrast waveguides and basic (passive) devices built from them. Several new results are reported, but to be more comprehensive we also review some of our previous results. We focus on a ridge waveguide, whose strong lateral confinement gives it unique properties fundamentally different from the conventional weakly guiding rib waveguides. The ridge waveguides have distinct characteristics in the single-mode and the multimode regimes. The salient features of the single-mode waveguides are their subwavelength width, strong birefringence, relatively high propagation loss, and high sensitivity to wavelength as well as waveguide width, all of which may limit device performance yet provide new opportunities for novel device applications. On the other hand, wider multimode waveguides are low loss and robust. In addition, they have a critical width where the birefringence is minimal or zero, giving rise to the possibility of realizing intrinsically polarization-independent devices. They can be made effectively single mode by employing differential leakage loss (with an appropriate etch depth) or lateral mode filtering (with a taper waveguide). Together these waveguides provide the photonic wire for interconnections and the backbone to build a broad range of compact devices. We discuss basic single-mode devices (based on directional couplers) and multimode devices (multimode interferometers) and indicate their underlying relationship.
The floating-base germanium-tin (GexSnx) heterojunction phototransistor (HPT) is designed and investigated as an efficient optical receiver in the short-wave infrared range. Simulations indicate that as the Sn content increases, the responsivity significantly increases due to a higher absorption coefficient and a larger valence band offset between Ge and GexSnx. GeSn HPTs that incorporated high-quality GeSn film grown by molecular beam epitaxy were fabricated, demonstrating optical response beyond wavelength of 2003 nm. At a low bias voltage of 1.0 V, optical response enhancement of ~10 times was achieved over the conventional GeSn p-i-n photodiode. High responsivities of ~1.8 A/W at 1550 nm and ~0.043 A/W at 2003 nm were demonstrated with low dark current density of 0.147 A/cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.