The solar power generation includes certain randomness and volatility, coupled with dynamic load involved in power fluctuations, which renders microgrid having certain unplanned instantaneous power during the process of real-time operation, so as to affect the stability of DC bus voltage. This paper, through constructing a model of off-grid photovoltaic DC microgrid under impact load characteristics, aiming at the fluctuate problems of the DC bus voltage caused by impact load, puts forward a fast response of hybrid energy-storing system composed of supercapacitors and batteries and superiors peak regulation capability to shave the peak and fill the valley of the microgrid. The researches on the strategy of double closed-loop voltage stabilization of blended energy storage system are made and the shortcomings of the double closed-loop voltage control of voltage and electricity are analyzed. And based on this, the tactics of new and double closed-loop voltage control of inner ring of power and the energy outer ring of DC bus capacitance are put forward and examined by simulation and experiment. The experiments prove that this method can more effectively suppress the influence of the fluctuations of impact load power on the DC bus voltage and further improves the system’s stability.
The photovoltaic DC microgrid has strong nonlinearity and time variation. Therefore, traditional dual closed-loop control strategy of voltage and current based on PI controller cannot effectively restrain the fluctuation and impact of DC bus voltage when the dynamic response of the system is improved. Under this situation, in this paper, the fuzzy-PI dual-mode controller is designed to upgrade the traditional dual closed-loop control, taking voltage outer ring into consideration, which is adopted to achieve good transient performance while the bus voltage deviation is large. While the bus voltage deviation is small, the PI controller is utilized for good steady-state performance. Hence, simulation and experimental results show that the fuzzy-PI dual-mode controller has the same advantages with both fuzzy control and PI control; in other words, it has the features of speedy response, low overshoot, good robustness, and strong anti-interference under different working conditions.
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an apical membrane chloride/bicarbonate ion channel in epithelial cells. Mutations in CFTR cause cystic fibrosis (CF), a disease characterized by thickened mucus secretions and is associated with subfertility and infertility. CFTR function has been well characterized in vitro and in vivo in airway and other epithelia studies. However, little is known about CFTR function in the cervix in health and its contribution to cyclic regulation of fertility from endocervical mucus changes. Contributing to this research gap is the lack of information on effect of sex steroid hormones on CFTR expression in cervix epithelial cells across the menstrual cycle. Herein we demonstrate hormonal regulation of CFTR expression in endocervical cells both in vitro and in vivo, and that conditionally reprogrammed endocervical epithelial cells can be used to interrogate CFTR ion channel function. CFTR activity was demonstrated in vitro using electrophysiology methods and functionally inhibited with the CFTR-specific inhibitors inh-172 and GlyH-101. We also report that CFTR expression is increased by estradiol in the macaque cervix both in vitro and in vivo in Rhesus macaques treated with artificial menstrual cycles. Estrogen upregulation of CFTR is blocked in vivo by co-treatment with progesterone. Our findings provide the most comprehensive evidence to date that steroid hormones drive changes in CFTR expression. These data are integral to understanding the role of CFTR as a fertility regulator in the endocervix.
Summary: CFTR is hormonally regulated and functional in the macaque endocervix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.