This paper considers linear discrete-time systems with additive disturbances, and designs a Model Predictive Control (MPC) law to minimise a quadratic cost function subject to a chance constraint. The chance constraint is defined as a discounted sum of violation probabilities on an infinite horizon. By penalising violation probabilities close to the initial time and ignoring violation probabilities in the far future, this form of constraint enables the feasibility of the online optimisation to be guaranteed without an assumption of boundedness of the disturbance. A computationally convenient MPC optimisation problem is formulated using Chebyshev's inequality and we introduce an online constraint-tightening technique to ensure recursive feasibility based on knowledge of a suboptimal solution. The closed loop system is guaranteed to satisfy the chance constraint and a quadratic stability condition.
This paper proposes a robust self-triggered model predictive control (MPC) algorithm for a class of constrained linear systems subject to bounded additive disturbances, in which the inter-sampling time is determined by a fast convergence self-triggered mechanism. The main idea of the self-triggered mechanism is to select a sampling interval so that a rapid decrease in the predicted costs associated with optimal predicted control inputs is guaranteed. This allows for a reduction in the required computation without compromising performance. By using a constraint tightening technique and exploring the nature of the open-loop control between sampling instants, a set of minimally conservative constraints is imposed on nominal states to ensure robust constraint satisfaction. A multi-step openloop MPC optimization problem is formulated, which ensures recursive feasibility for all possible realisations of the disturbance. The closed-loop system is guaranteed to satisfy a mean-square stability condition. To further reduce the computational load, when states reach a predetermined neighbourhood of the origin, the control law of the robust self-triggered MPC algorithm switches to a self-triggered local controller. A compact set in the state space is shown to be robustly asymptotically stabilized. Numerical comparisons are provided to demonstrate the effectiveness of the proposed strategies.
In order to simultaneously improve system performance and resource utilization of distributed multiple-input multiple-output (MIMO) radar systems, a joint resource allocation method is proposed to address the velocity estimation problem for multiple targets tracking in this paper. The paper focuses to improve the tracking performance for key targets using the remaining resources when the general targets have obtained resources to reach to tracking requirements. Firstly, a criterion minimizing the velocity estimation mean square error (MSE) for a key target is considered. Restricted by limited and relatively sufficient system resources and given velocity estimation requirements for general targets, a joint resource allocation optimization model with transmitters, receivers, transmitted power, and signal time is established. We propose a suboptimal method to approximately solve this problem. The method separates the optimization into three steps, where each step transforms the corresponding mixed-Boolean optimization problem into a second-order cone programming (SOCP) problem by convex relaxation. Finally, the approximately optimal solution can be obtained by cyclic minimization method. Extensive simulations indicate that compared with other methods, the proposed joint method can achieve the lowest velocity estimation MSE with the fewest transmitters. Meanwhile, limited by the given velocity estimation MSE, the proposed method can focus on the key target and achieve the whole velocity estimation error minimization while a greater flexibility for target tracking number can be obtained. Moreover, random experiments can further validate and evaluate the proposed method's effectiveness and traceability with the given scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.