The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.
In this work, a quick and effective method to synthesize carbon nanotubes (CNTs) is reported; a commercial microwave oven of 600 W at 2.45 GHz was utilized to synthesize CNTs from plasma catalytic decomposition of polyethylene. Polyethylene and silicon substrate coated with iron (III) nitrate were placed in the reaction chamber to form the synthesis stock. The CNTs were synthesized at 750°C under atmospheric pressure of 0.81 mbar. Raman spectroscopy and field emission scanning electron microscope revealed the quality and entangled bundles of mixed CNTs from which the diameters of the CNTs were calculated to be between 1.03 and 25.00 nm. High resolution transmission electron microscope further showed that the CNTs obtained by this method are graphitized. Energy dispersive X-ray analysis and thermogravimetric analysis revealed above 98% carbon purity.
High demand of semiconductor gas sensor works at low operating temperature to as low as 100 °C has led to the fabrication of gas sensor based on TiO2 nanoparticles. A sensing film of gas sensor was prepared by mixing the sensing material, TiO2 (P25) and glass powder, and B2O3 with organic binder. The sensing film was annealed at temperature of 500 °C in 30 min. The morphological and structural properties of the sensing film were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The gas sensor was exposed to hydrogen with concentration of 100–1000 ppm and was tested at different operating temperatures which are 100 °C, 200 °C, and 300 °C to find the optimum operating temperature for producing the highest sensitivity. The gas sensor exhibited p-type conductivity based on decreased current when exposed to hydrogen. The gas sensor showed capability in sensing low concentration of hydrogen to as low as 100 ppm at 100 °C.
Conducting nanofiber composed of poly(vinyl alcohol) (PVA), graphene quantum dots (GQDs) and poly(3,4-ethylenedioxythiophene) (PEDOT) was prepared for symmetrical supercapacitor through electrospinning and electropolymerization techniques. The formation of PVA nanofibers with the addition of GQDs was excellently prepared with the average diameter of 55.66 6 27 nm. Field emission scanning electron microscopy images revealed that cauliflower-like structure of PEDOT was successfully coated on PVA-GQD electrospun nanofibers. PVA-GQD/PEDOT nanocomposite exhibited the highest specific capacitance of 291.86 F/g compared with PVA/ PEDOT (220.73 F/g) and PEDOT (161.48 F/g). PVA-GQD/PEDOT also demonstrated a high specific energy and specific power of 16.95 and 984.48 W/kg, respectively, at 2.0 A/g current density. PVA-GQD/PEDOT exhibited the lowest resistance of charge transfer (R ct ) and equivalent series resistance compared with PEDOT and PVA/PEDOT, indicating that the fast ion diffusion between the electrode and electrolyte interface. PVA-GQD/ PEDOT nanocomposite also showed an excellent stability with retention of 98% after 1000 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.