We fabricated an inverted-staggered amorphous In–Ga–Zn-oxide (a-IGZO) thin film transistor (TFT) and measured the temperature dependence of its characteristics. A threshold voltage (V
th) shift between 120 and 180 °C was as large as 4 V. In an analysis with two-dimensional (2D) numerical simulation, we reproduced the measured result by assuming two types of donor-like states as carrier generation sources. Furthermore, by ab initio molecular dynamics (MD) simulation, we determined the electronic structures of three types of a-IGZO structures, namely, “stoichiometric a-IGZO”, “oxygen deficiency”, and “hydrogen doping”.
We have newly developed a 4.0-in. quarter video graphics array (QVGA) active-matrix organic light-emitting diode (AMOLED) display integrated with gate and source driver circuits using amorphous In–Ga–Zn-oxide (IGZO) thin-film transistors (TFTs). Focusing on a passivation layer in an inverted staggered bottom gate structure, the threshold voltage of the TFTs can be controlled to have “normally-off” characteristics with suppressed variation by using a SiO
x
layer formed by sputtering with a low hydrogen content. In addition, small subthreshold swing S/S of 0.19 V/decade, high field-effect mobility µFE of 11.5 cm2 V-1 s-1, and threshold voltage V
th of 1.27 V are achieved. The deposition conditions of the passivation layer and other processes are optimized, and variation in TFT characteristics is suppressed, whereby high-speed operation in gate and source driver circuits can be achieved. Using these driver circuits, the 4.0-in. QVGA AMOLED display integrated with driver circuits can be realized.
We found that, although alpha -cyano-4 -nitro-4-N, N -dimethylaminostilbene has larger hyperpolarizability than that of conventional 4 -N ,N -dimethylamino-nitrostilbene, the addition of the cyano group makes it much more easy to photo-isomerize, thus destroying the molecular ordering in poled chromophore doped polymers. Experimental evidence was obtained by monitoring the second-harmonic generation intensity, UV-Vis absorption spectrum, and FTIR spectrum. The photo-isomerization reaction process was monitored by optical pump induced absorption anisotropy measurement. Comparisons with the behaviour of a azobenzene dye are also made.
We have developed a 4.0 inch QVGA AMOLED display using amorphous In‐Ga‐Zn‐Oxide TFTs, focusing on a passivation layer. Threshold voltage of the TFTs can be controlled to have “normally off” characteristics by using SiOx with a low hydrogen content. Besides, small subthreshold swing and high saturation mobility are obtained.
We have developed a highly efficient top-emitting white OLED by employing a stable reflective anode structure and a p-doped buffer layer. Furthermore, combining the white OLED with color filters, we succeeded in fabricating a prototype of a highdefinition AMOLED display having highly reliable OS-FETs as the backplane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.