Parvimonas micra (P. micra) is reported to be associated with colorectal cancer (CRC). However, its association with colorectal adenoma (CRA) and its role in the initiation of colorectal tumors remain unknown. The present study aimed to clarify the relationship between P. micra and CRA and CRC by exploring the changes of P. micra abundance in an adenoma-carcinoma sequence in a new cohort and 4 public sequencing datasets. To investigate the alterations of P. micra abundance in the gut along the adenoma-carcinoma sequence, quantitative PCR (qPCR) was conducted to measure the relative abundance of P. micra in fecal samples from 277 subjects (128 patients with CRA, 66 patients with CRC and 83 healthy individuals, as controls) who underwent colonoscopy as outpatients. Then, the relative abundance of P. micra was analyzed in fecal samples from 596 subjects (185 healthy controls, 158 CRC, 253 CRA) in four public 16S rRNA sequencing datasets. The qPCR results demonstrated that the CRA group had an abundance of P. micra (P=0.2) similar to that of the healthy control group, while the CRC group had a significantly increased abundance (P=8.2x10-11). The level of P. micra effectively discriminated patients with CRC from healthy controls, while it poorly discriminated patients with CRA from healthy controls; with an area under the receiver operating characteristic curve of 0.867 for patients with CRC and 0.554 for patients with CRA. The same pattern of the alteration of P. micra abundance, which was low in healthy controls and patients with CRA but elevated in patients with CRC, was found in all four public sequencing datasets. These results suggested that P. micra was closely associated with, and may serve as a diagnostic marker for, CRC but not CRA. Moreover, it was indicated that P. micra may be an opportunistic pathogen of CRC, which may promote CRC development but serve a limited role in tumorigenesis.
MicroRNA‑205 (miR‑205) has been reported to be downregulated, and serves critical roles in the pathogenesis and progression of several types of cancer, including breast, prostate and lung cancer. However, the underlying mechanism of miR‑205 in thyroid cancer remains unclear. In the present study, it was demonstrated that the expression of miR‑205 was reduced in thyroid cancer tissues compared with non‑cancer tissues. In addition, miR‑205‑knockdown models in the BHT‑101 cell line and ectopic expression models in the 8505‑C cell line were used to measure the biological functions of miR‑205. The results indicated that miR‑205 inhibited certain aspects of thyroid cancer, including cell proliferation, migration and invasion. Furthermore, Yes‑associated protein 1 (YAP1) was identified as a target gene of miR‑205 and its expression was negatively correlated with that of miR‑205 in thyroid cancer tissues. Depletion of YAP1 partially reduced the anti‑miR‑205‑induced cell growth and invasion. The results of the present study suggested that the tumor suppressive functions of miR‑205 via targeting YAP1 could be a novel target for the treatment of thyroid cancer.
Drought and extreme precipitation events can have major environmental and socioeconomic impacts. Yet, how drought and wetness are changing in China in the context of climate change is still under debate. Here, the standardized precipitation evapotranspiration index (SPEI) was calculated based on high-quality and more densely distributed daily meteorological observation data from 655 stations across China during the period of 1965–2017. National and regional trends in drought and wetness and their various characteristics, including intensity, duration, frequency, and percentage of area affected, were investigated at multiple timescales. We found that (1) China as a whole has undergone a significant (p < 0.01, trend significant at the level of 0.01) wetting trend, with an annual SPEI increase of 0.5 per decade from 1965 to 2017. A seasonal wetting trend was also observed, with summer being particularly significant (p < 0.01). (2) Regionally, each subregion also showed a wetting trend during the study period except for southwest China, and these wetting trends were significant in the western region of northwest China (p < 0.05, trend significant at the level of 0.05), the Tibetan Plateau (p < 0.05), and eastern China (p = 0.06). (3) Decadal trends in drought and wetness intensity, frequency, duration, and affected areas indicated that the drought events also became more severe and more frequent in the last two decades, and the areas showing drying trends were mainly located in southwest China (especially for the autumn drought) and the southwestern parts of eastern northwest China (spring drought). Our results highlight the fact that although a wetting trend was observed in most regions of China, the frequent occurrence of severe drought in southwest China and the southwestern parts of eastern northwest China still present a considerable threat to both the environment and society. Therefore, how to effectively coordinate the allocation of regional water resources to cope with drought risk under future climate change will be particularly important.
MicroRNAs (miRNAs/miRs) negatively regulate the expression of numerous genes and therefore contribute to the occurrence and development of papillary thyroid carcinoma (PTC). Hence, further investigation into the specific roles of miRNAs in PTC is valuable for developing effective therapeutic methods for patients with this disease. MiRNA-509 is dysregulated and serves pivotal roles in several types of human cancer; however, the expression and roles of miR-509 in PTC and its underlying mechanism require further investigation. In the present study, the expression of miR-509 in PTC tissues and cell lines was detected and the specific functions of miR-509 in the progression of PTC were investigated. Additionally, the molecular mechanisms underlying the action of miR-509 in PTC were determined. The present study demonstrated that miR-509 was significantly downregulated in PTC tissues and cell lines. MiR-509 upregulation inhibited the PTC cell proliferation and invasion. Mechanistically, paired box 6 (PAX6) was identified as a novel target of miR-509 in PTC cells. In clinical PTC samples, miR-509 was significantly overexpressed and inversely correlated with PAX6 expression. PAX6 restoration effectively reversed the inhibitory effects of miR-509 overexpression on PTC cell proliferation and invasion. These results demonstrated that miR-509 may act as a tumor suppressor in PTC by directly targeting PAX6. Thus, miR-509 may be a potential therapeutic target for the treatment of patients with PTC.
Background: Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, and cases have been rising steadily worldwide in the past few decades. Despite great progress having been made in surgery and chemotherapy for PTC, the survival rate of PTC patients has not increased significantly. Therefore, there is an urgent need to explore novel treatment strategies. Materials and Methods: The levels of circRNA_103598, miR-23a-3p and IL-6 mRNA in PTC tissues and cells were examined by qRT-PCR assay. Cell proliferation and IC 50 values of oncolytic vaccinia virus (OVV) were detected by CCK-8 assay. A dual-luciferase reporter assay was performed to detect the relationships among circRNA_103598, miR-23a-3p and IL-6. ELISA was carried out to detect the expression of IL-6. Results: We found that circRNA_103598 was increased in PTC tissues and cell lines and acted as a sponge for miR-23a-3p. Moreover, knockdown of miR-23a-3p suppressed the OVV-mediated antitumor effect and cell proliferation in PTC. In addition, we revealed that circRNA_103598 bound to miR-23a-3p as a sponge to promote IL-6 expression. Conclusion: Our study first revealed the high expression and oncogenic function of circRNA_103598 in PTC cells. Then, circRNA_103598 sponged miR-23a-3p to upregulate IL-6 expression, with the resulted that cell proliferation was promoted and the OVVmediated antitumor effect was enhanced by strengthening the viral replication, providing new insights into future therapy for PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.