Soil resident water-stable macroaggregates (diameter (Ø) > 0.25 mm) play a critical role in organic carbon conservation and fertility. However, limited studies have investigated the direct effects of stand development on soil aggregation and its associated mechanisms. Here, we examined the dynamics of soil organic carbon, water-stable macroaggregates, litterfall production, fine-root (Ø < 1 mm) biomass, and soil microbial biomass carbon with stand development in poplar plantations (Populus deltoides L. ‘35’) in Eastern Coastal China, using an age sequence (i.e., five, nine, and 16 years since plantation establishment). We found that the quantity of water-stable macroaggregates and organic carbon content in topsoil (0–10 cm depth) increased significantly with stand age. With increasing stand age, annual aboveground litterfall production did not differ, while fine-root biomass sampled in June, August, and October increased. Further, microbial biomass carbon in the soil increased in June but decreased when sampled in October. Ridge regression analysis revealed that the weighted percentage of small (0.25 mm ≤ Ø < 2 mm) increased with soil microbial biomass carbon, while that of large aggregates (Ø ≥ 2 mm) increased with fine-root biomass as well as microbial biomass carbon. Our results reveal that soil microbial biomass carbon plays a critical role in the formation of both small and large aggregates, while fine roots enhance the formation of large aggregates.
Aquatic plants play an essential role and are effective in mitigating lake eutrophication by forming complex plant-soil system and retaining total nitrogen (TN) and phosphorus (TP) in soils to ultimately reduce their quantities in aquatic systems. Two main vegetation types (Phragmites australis community and P. australis + Typha latifolia community) of Qin Lake wetland were sampled in this study for the analysis of TN and TP contents and reserves in the wetland soils. The results showed that (1) the consumption effect of Qin Lake wetland on soluble N was much more significant than on soluble P. (2) The efficiency of TN enrichment in wetland soil was enhanced by vegetation covering of P. australis and T. latifolia. (3) Wetland soil P was consumed by P. australis community and this pattern was relieved with the introduction of T. latifolia. (4) According to the grey relativity analysis, the most intensive interaction between plants and soil occurred in summer. In addition, the exchange of N in soil-vegetation system primarily occurred in the 0–15 cm soil layer. Our results indicated that vegetation covering was essential to the enrichment of TN and TP, referring to the biology-related fixation in the wetland soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.