The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
The multidimensional deployment of large-scale spatial solar arrays has been the basis for high-power advanced spacecraft and a symbol of the leaps forward in aerospace technology. Activated and passive drives have often been used in combination to implement the driving mechanism of large-scale solar arrays, which can reduce the impact of the deployment and locking process. For the first time, a novel active speed-limit mechanism was introduced into the two-dimensional secondary deployable drive system of a large-scale spatial solar array, achieving a balance between large deployable driving torque and small locking impact load. A highly integrated and lightweight drive system has been designed, integrating motor drive, gear drive, and adaptive torque limiting device to achieve adaptive control of the deployment torque of the solar array. A dynamic simulation system for the entire process of a large-scale spatial solar array based on the Kane method and ADAMS model has been established. A two-dimensional secondary deployable motion control law for a large-scale solar array using an active speed-limit mechanism has been established, and the dynamic characteristic parameters of the active speed-limit driving mechanism have been determined, such as driving torque, driving mode, and driving speed. The results can be used to guide the design of the deployable driving mechanism for large-scale spatial solar arrays.
The technologies of spacecraft Prognostics and Health Management (PHM) are researched from the architecture and communication protocol. Firstly the spacecraft PHM system is proposed to build with the mode of orbit-ground coordination three-level closed loop. Then, the communication protocol of PHM for spacecraft is designed. Keyword-prognostics and health management; spacecraft; architecture I.(2) Communication synchronization service The communication synchronization service supports time division multiplexing of bus messages and the certainty of message sequences, so that messages are determined before they are transmitted on the bus. The time period of data bus communication is called communication frame. Each communication frame on the data bus starts with a communication frame synchronization message, which is synchronized by a command with a data word indicating the transmission frame number. The service can be used for communication synchronization between PHM controller and single PHM module.
A large area of sunlight onto solar cells is gathered by concentrating system for spacial concentrating solar array, which reduces the amount of solar cells by increasing light intensity onto the solar cells of the unit area. Under concentrating conditions, the short-circuit current, open-circuit voltage, fill factor, efficiency, operating temperature and strong thermal-electrical coupling characteristics of concentrating solar cells are different from the conventional solar cells because of the high intensity and high operating temperature. The concentrating module design, solar cell selection, and design of solar cell heat-dissipation have been carried out. The thermal-electric coupling model of special concentrating photovoltaic system has been established. The relationships among concentrated ratio, substrate-thickness, thermal conductivity of substrate-material and solar cell’s temperature, density of short-circuit current, open-circuit voltage, maximum output power have been analyzed, which provide a view to a reasonabl0e match and selection of multi-parameters in engineering design. Results show that the concentrated ratio has an overall effect on the open-circuit voltage, short-circuit current, efficiency and operating temperature of the solar cell. There is a strong coupling relationship among the parameters, and the positive and negative impacts caused by the concentrating characteristics should be weighed in the engineering design. The short-circuit current density of concentrating solar cells is proportional to the concentrated ratio. Under the lower concentrated ratio circumstance, fill factor and efficiency is not substantially affected by the concentrated ratio. The maximum output power and open-circuit voltage increase with the increase of concentrated ratio. Temperature of concentrating solar cells has an adverse effect on the open-circuit voltage, efficiency and output power, which needs high efficient radiator measures to be taken. The operating temperature of solar cells could be decreased significantly by the high thermal conductivity of the substrate-material. The concentrated ratio between 9~15 is recommended for spacial solar array, which not only embodies the advantage of concentrator like improving the cell-efficiency and decreasing the cost, but also doesn’t exact the deploying precision of concentrating system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.