Mandarin fishes (Sinipercidae) are piscivores that feed solely on live fry. Unlike higher vertebrates, teleosts exhibit feeding behavior driven mainly by genetic responses, with no modification by learning from parents. Mandarin fishes could serve as excellent model organisms for studying feeding behavior. We report a long-read, chromosomal-scale genome assembly for Siniperca chuatsi and genome assemblies for Siniperca kneri, Siniperca scherzeri and Coreoperca whiteheadi. Positive selection analysis revealed rapid adaptive evolution of genes related to predatory feeding/aggression, growth, pyloric caeca and euryhalinity. Very few gill rakers are observed in mandarin fishes; analogously, we found that zebrafish deficient in edar had a gill raker loss phenotype and a more predatory habit, with reduced intake of zooplankton but increased intake of prey fish. Higher expression of bmp4, which could inhibit edar expression and gill raker development through binding of a Xvent-1 site upstream of edar, may cause predatory feeding in Siniperca.
Deoxynivalenol (DON) is a highly abundant mycotoxin that exerts many adverse effects on humans and animals. Much effort has been made to control DON in the past, and bio-transformation has emerged as the most promising method. However, useful and effective application of bacterial bio-transformation for the purpose of inhibiting DON remains urgently needed. The current study isolated a novel DON detoxifying bacterium, Slackia sp. D-G6 (D-G6), from chicken intestines. D-G6 is a Gram-positive, non-sporulating bacterium, which ranges in size from 0.2–0.4 μm × 0.6–1.0 μm. D-G6 de-epoxidizes DON into a non-toxic form called DOM-1. Optimum conditions required for degradation of DON are 37–47 °C and a pH of 6–10 in WCA medium containing 50% chicken intestinal extract. Besides DON detoxification, D-G6 also produces equol (EQL) from daidzein (DZN), which shows high estrogenic activity, and prevents estrogen-dependent and age-related diseases effectively. Furthermore, the genome of D-G6 was sequenced and characterized. Thirteen genes that show potential for DON de-epoxidation were identified via comparative genomics. In conclusion, a novel bacterium that exhibits the dual function of detoxifying DON and producing the beneficial natural estrogen analogue, EQL, was identified.
Wnt/β-catenin signaling activity is maintained in homeostasis by an expanding list of molecular determinants. However, the molecular components and the regulatory mechanisms involved in its fine-tuning remain to be determined. Here, we identified C9orf140, a tumor-specific protein, as a novel Axin1-interacting protein by tandem-affinity purification and mass spectrometry. We further showed that C9orf140 is a negative regulator of Wnt/β-catenin signaling in cultured cells as well as in zebrafish embryos. It functions upstream of β-catenin, outcompetes PP2A for binding to Axin1, influences the balance between phosphorylation and de-phosphorylation of β-catenin, and ultimately compromises Wnt3A-induced β-catenin accumulation. Interestingly, Wnt-induced C9orf140 expression via β-catenin. We propose that C9orf140 mediates a negative feedback loop of Wnt/β-catenin signaling by interacting with Axin1. Our results advance the current understanding of the exquisite control of Wnt/β-catenin signaling cascade, and provide evidence of the new role of C9orf140.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.