Background: Salvianolate, a compound mainly composed of salvia magnesium acetate, is extracted from the Chinese herb Salvia miltiorrhiza. Because of its biological activity, easy quality control and certain efficacy, salvianolate is widely used in treating ischemic cardiocerebral vascular disease, liver damage, renal injury, diabetes, and its complications. Particularly, it has potential protective effects on diabetic nephropathy (DN). Objective: This meta-analysis aimed to evaluate the efficacy and safety of salvianolate when combined with western medicine in patients affected with DN. Methods: We searched Pubmed, Web of Science, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Data knowledge service platform (Wanfang Data), Chinese Scientific Journal Database (VIP), and China Biology Medicine Disc (SinoMed) for randomized controlled trials (RCTs) of salvianolate in combination with western medicine on DN, including results from the foundation of each database until November 30, 2019. Two reviewers independently performed literature screening, data extraction, and quality evaluation. This meta-analysis was carried out using RevMan5.3 software.
Objective. Through a network pharmacology method, we screened the main active compounds of Citri Reticulatae Pericarpium (CRP), constructed a drug-ingredient-disease-target network, explored the molecular mechanism of its treatment of myocardial hypertrophy, and validated it by using molecular biology approach. Methods. Traditional Chinese Medicine Systems Pharmacology (TCMSP) and GeneCards were utilised to collect the effective component in CRP and the targets of CRP and myocardial hypertrophy. The STRING database constructed the protein interaction network. The drug-ingredient-disease-target network was outlined by the Cytoscape 3.9.0 software. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the Metascape database. Real-time PCR (RT-PCR) and Western blotting were utilised to determine the mRNA and protein level of the critical targets of CRP therapy for myocardial hypertrophy. Results. We found that five practical components of CRP exerted therapeutic effects on myocardial hypertrophy by modulating 41 targets. Further analysis revealed that naringenin was the essential active compound in CRP that regulated myocardial hypertrophy. In addition, we showed that the active compounds of CRP might exert antihypertrophy effects via regulating essential target proteins such as AKT1-, MAPK3-, PPARA-, PPARG-, and ESR1-mediated signaling pathways such as cell proliferation, nuclear receptor activation, and oxidative stress. The molecular biology experiments demonstrated that naringenin inhibited the mRNA level of NPPA and NPPB induced by Ang II and regulated related targets such as AKT1, MAPK3, PPARA, PPARG, and ESR1. Conclusion. CRP could inhibit myocardial hypertrophy through multitarget and multiapproach.
ObjectiveOur study aimed to investigate the potential mechanisms of the herb pair Zhizi-Danshen (ZD) for coronary heart disease (CHD) using network pharmacological data mining technology.MethodsThe Traditional Chinese Medicine System Pharmacology (TCMSP) database was used to collect the active ingredients of ZD and predict ZD-related target proteins. Afterwards, we identified CHD-related targets from DisGeNET database, NCBI gene database, and TTD database. The common targets both from ZD and CHD were screened by Venny2.1, which were then imported into the String database for protein-protein interaction (PPI) analysis. Finally, the GO and KEGG enrichment analysis were performed by R software, and the network construction was established using Cytoscape3.7.2.ResultsWe obtained 199 possible targets from 62 candidate ingredients of ZD and 1033 CHD-ralated targets, with 83 overlapping common target genes. Then, 11 core targets were acquired from PPI network analysis. Further, GO analysis showed that these common targets mainly influenced receptor ligand activity,cytokine activity,cytokine receptor binding,steroid hormone receptor activity, and peptide binding. KEGG pathway analysis indicated that ZD affected CHD through seven important pathways linked to vascular endothelial function regulation (fluid shear stress and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway), imflammatory effects (IL-17 signaling pathway, TNF signaling pathway,Toll-like receptor signaling pathway),and hormone regulation (relaxin signaling pathway). ConclusionsThis study revealed the potential pharmacological mechanisms of ZD against CHD, which were mainly associated with regulation of vascular endothelial function and inflammatory effects, promotion of vasodilatation, and prevention of cardiac fibrosis. Moreover, it provided a novel conception for the development of alternative therapies on CHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.