The mevalonate pathway is known for the synthesis of cholesterol, but recent studies have reported that it also controls Hippo signaling, which is critical for the regulation of organ size and tumorigenesis. Here, we discover that the suppression of the mevalonate pathway inhibits the growth and proliferation of colon cancer cell lines. The results of transcriptomic and proteomic assays suggested that the mevalonate pathway controls multiple signaling pathways relevant to cell proliferation, and the results were further confirmed using western blot, PCR, and immunofluorescence assays. As cell proliferation is an energy-consuming process, we postulate that the mevalonate pathway may also control nutrient uptake to coordinate the processes of energy supply and cell proliferation. Here, we found that lovastatin, a mevalonate pathway inhibitor, suppresses glucose and amino acid uptake and lactate acid production. More importantly, mevalonic acid itself is sufficient to promote glucose uptake by colon cancer cells. In addition, we found that colon cancer tissues displayed a higher expression of mevalonate pathway enzymes, which may promote cell growth and stimulate energy uptake. Together, our findings establish the mevalonate pathway as a critical regulator in coordinating energy input and cell proliferation.
Currently, inclinometers are often used to monitor the horizontal displacement of deep foundation pits; however, this method generally has a high cost and complex operation and cannot monitor in real time. In this paper, a novel monitoring method for horizontal displacement of deep foundation pits based on laser image recognition technology is proposed. By identifying the displacement of the spot produced by the laser emitter fixed at the monitoring point, the displacement of the deep foundation pit is determined. In addition, the impact of the angle is considered and eliminated. A series of experimental results indicate that this method exhibits high precision and satisfies the requirements of practical engineering. Simultaneously, it exhibits the advantages of low cost, easy operation, and real-time monitoring. It provides a novel method for the displacement monitoring of deep foundation pits.
In this paper, a claw-pole magnetic levitation torque motor (CPMLTM) utilizing cogging torque is proposed as an electromechanical converter (EMC) for two-dimensional valves (2D valve). Compared to the existing torque motor, CPMLTM utilizes the cogging torque between the stator and the rotor, and has the ability of automatic neutral adjustment, which greatly reduces the difficulty of neutral adjustment of two-dimensional valves and improves the accuracy of neutral adjustment. First, the structure and working principle of CPMLTM are introduced, followed by an analysis of the cogging torque of CPMLTM based on the energy method and Fourier expansion. The effects of the claw pole tooth (CPT) shape and slot opening coefficient on the cogging torque of CPMLTM are investigated. To analyze the sensitivity of the electromagnetic torque to each design parameter, a qualitative expression for the electromagnetic torque containing various design parameters was derived based on the equivalent magnetic circuit method, and a set of orthogonal tests were designed to calculate the electromagnetic torque using the finite element method (FEM). To demonstrate the feasibility of the proposed CPMLTM principle and to verify the correctness of the cogging torque analysis model and FEM, a prototype was fabricated and a test rig was constructed for experimental study. The experiments show that CPMLTM can indeed utilize cogging torque to achieve automatic neutral adjustment, and that the neutral adjustment is more accurate. Moreover, the CPMLTM has good static and dynamic characteristics: a neutral electromagnetic torque of 0.1 Nm at a coil magnetomotive force (MMF) of 100 A, step response time up to 4.575 ms, and amplitude frequency bandwidth and phase frequency bandwidth of 173.7 Hz and 86.5 Hz, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.