Magnaporthe oryzae (Mo) is the causative pathogen of the damaging disease rice blast. The effector gene AvrPib, which confers avirulence to host carrying resistance gene Pib, was isolated via map-based cloning. The gene encodes a 75-residue protein, which includes a signal peptide. Phenotyping and genotyping of 60 isolates from each of five geographically distinct Mo populations revealed that the frequency of virulent isolates, as well as the sequence diversity within the AvrPib gene increased from a low level in the far northeastern region of China to a much higher one in the southern region, indicating a process of host-driven selection. Resequencing of the AvrPiballele harbored by a set of 108 diverse isolates revealed that there were four pathoways, transposable element (TE) insertion (frequency 81.7%), segmental deletion (11.1%), complete absence (6.7%), and point mutation (0.6%), leading to loss of the avirulence function. The lack of any TE insertion in a sample of non-rice infecting Moisolates suggested that it occurred after the host specialization of Mo. Both the deletions and the functional point mutation were confined to the signal peptide. The reconstruction of 16 alleles confirmed seven functional nucleotide polymorphisms for the AvrPiballeles, which generated three distinct expression profiles.
HDACs (histone deacetylases) regulate various aspects of growth, development, and pathogenesis in plant-pathogenic fungi. Most members of HDAC classes I to III have been functionally characterized, except for orthologous Rpd3 and Hst4, in the rice blast fungus
Magnaporthe oryzae
.
Nap1 is an evolutionarily conserved protein from yeast to human and is involved in diverse physiological processes, such as nucleosome assembly, histone shuttling between the nucleus and cytoplasm, transcriptional regulation, and the cell cycle regulation. In this paper, we identified nucleosome assemble protein MoNap1 in Magnaporthe oryzae and investigated its function in pathogenicity. Deletion of MoNAP1 resulted in reduced growth and conidiation, decreased appressorium formation rate, and impaired virulence. MoNap1 affects appressorium turgor and utilization of glycogen and lipid droplets. In addition, MoNap1 is involved in the regulation of cell wall, oxidation, and hyperosmotic stress. The subcellular localization experiments showed that MoNap1 is located in the cytoplasm. MoNap1 interacts with MoNbp2, MoClb3, and MoClb1 in M. oryzae. Moreover, deletion of MoNBP2 and MoCLB3 has no effects on vegetative growth, conidiation, and pathogenicity. Transcriptome analysis reveals that MoNAP1 is involved in regulating pathogenicity, the melanin biosynthetic process. Taken together, our results showed that MoNap1 plays a crucial role in growth, conidiation, and pathogenicity of M. oryzae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.