Technique for the order of preference by similarity to ideal solution (TOPSIS) and elimination and choice translating reality (ELECTRE) are widely used methods to solve multi-criteria decision making problems. In this research article, we present bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I method to solve such problems. We use the revised closeness degree to rank the alternatives in our bipolar neutrosophic TOPSIS method. We describe bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I method by flow charts. We solve numerical examples by proposed methods. We also give a comparison of these methods.
The VIKOR methodology stands out as an important multi-criteria decision-making technique. VIKOR stands for “VIekriterijumsko KOmpromisno Rangiranje”, a Serbian term for “multi-criteria optimization and compromise solution”. It has been adapted to sources of information with sundry formats. We contribute to that strand on literature with a design of a new multiple-attribute group decision-making method called the trapezoidal bipolar fuzzy VIKOR method. It consists of a suitable redesign of the VIKOR approach so that it can use information with bipolar configurations. Bipolar fuzzy sets (and numbers) establish a symmetrical trade-off between two judgmental constituents of human thinking. The agents acquire uncertain and vague information in the form of linguistic variables parameterized by trapezoidal bipolar fuzzy numbers. Trapezoidal bipolar fuzzy numbers are considered by decision-makers for assigning the preference information of alternatives with respect to different attributes. Our non-trivial adaptation necessitates several steps. The ranking function of bipolar fuzzy numbers is employed to make a simple decision matrix with real numbers as its entries. Shannon’s entropy concept is applied to evaluate the normalized weights for attributes that may be either partially or completely unknown to the decision-makers. The ordering of the alternatives is obtained by assorting the maximum group utility and the individual regret of the opponent in an ascending manner. For illustration, the proposed technique is applied to two group decision-making problems, namely, the selection of waste treatment methods and the site to plant a thermal power station. A comparison of this method with the trapezoidal bipolar fuzzy TOPSIS method is also presented.
The Analytical Hierarchy Process (AHP) is arguably the most popular and factual approach for computing the weights of attributes in the multi-attribute decision-making environment. The Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE) is an outranking family of multi-criteria decision-making techniques for evaluating a finite set of alternatives, that relies on multiple and inconsistent criteria. One of its main advantages is the variety of admissible preference functions that can measure the differences between alternatives, in response to the type and nature of the criteria. This research article studies a version of the PROMETHEE technique that encompasses multipolar assessments of the performance of each alternative (relative to the relevant criteria). As is standard practice, first we resort to the AHP technique in order to quantify the normalized weights of the attributes by the pairwise comparison of criteria. Afterwards the m-polar fuzzy PROMETHEE approach is used to rank the alternatives on the basis of conflicting criteria. Six types of generalized criteria preference functions are used to measure the differences or deviations of every pair of alternatives. A partial ranking of alternatives arises by computing the positive and negative outranking flows of alternatives, which is known as PROMETHEE I. Furthermore, a complete ranking of alternatives is achieved by the inspection of the net flow of alternatives, and this is known as PROMETHEE II. Two comparative analysis are performed. A first study checks the impact of different types of preference functions. It considers the usual criterion preference function for all criteria. In addition, we compare the technique that we develop with existing multi-attribute decision-making methods.
The preference ranking organization method for enrichment of evaluations (PROMETHEE) method considers a significant outranking class of multi-criteria decision analysis (MCDA), as it is easy to deal with its simple computations. In the PROMETHEE, different preference functions are used according to the type and nature of attributes or criteria that demonstrate the clearness and reliability of this method. This study provides a new version of the PROMETHEE method using bipolar fuzzy information, named the bipolar fuzzy PROMETHEE method. Bipolar fuzzy sets or numbers constitute an asymmetrical relationship between two judgmental factors of human reasoning. Vague and imprecise knowledge is characterized by bipolar fuzzy linguistic terms which are further represented in the form of trapezoidal bipolar fuzzy numbers. The trapezoidal bipolar fuzzy numbers are used by analysts to assign the preferences of alternatives on the basis of criteria. Further, a ranking function of bipolar fuzzy numbers is considered to access the crisp real preferences of alternatives. The entropy weighting information is employed to calculate the weights of attributes by considering the condition of normality. A numerical example such as the selection of green suppliers by using the bipolar fuzzy PROMETHEE is performed on the basis of the usual criterion preference function in order to explain the procedure of the proposed method. Comparable results are derived by using the combination of linear and level preference functions. The results obtained by using different types of preference functions are the same, representing the authenticity of the proposed bipolar fuzzy PROMETHEE method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.